Interfibril hydrogen bonding improves the strain-rate response of natural armour

dc.citation.journalTitleJOURNAL OF THE ROYAL SOCIETY INTERFACE
dc.contributor.authorArola D.
dc.contributor.authorGhods S.
dc.contributor.authorSon C.
dc.contributor.authorMurcia S.
dc.contributor.authorOssa E.A.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería de Producciónspa
dc.contributor.researchgroupMateriales de Ingenieríaspa
dc.creatorArola D.
dc.creatorGhods S.
dc.creatorSon C.
dc.creatorMurcia S.
dc.creatorOssa E.A.
dc.date.accessioned2021-04-12T21:26:45Z
dc.date.available2021-04-12T21:26:45Z
dc.date.issued2019-01-01
dc.description.abstractFish scales are laminated composites that consist of plies of unidirectional collagen fibrils with twisted-plywood stacking arrangement. Owing to their composition, the toughness of scales is dependent on the intermolecular bonding within and between the collagen fibrils. Adjusting the extent of this bonding with an appropriate stimulus has implications for the design of next-generation bioinspired flexible armours. In this investigation, scales were exposed to environments of water or a polar solvent (i.e. ethanol) to influence the extent of intermolecular bonding, and their mechanical behaviour was evaluated in uniaxial tension and transverse puncture. Results showed that the resistance to failure of the scales increased with loading rate in both tension and puncture and that the polar solvent treatment increased both the strength and toughness through interpeptide bonding; the largest increase occurred in the puncture resistance of scales from the tail region (a factor of nearly 7). The increase in strength and damage tolerance with stronger intermolecular bonding is uncommon for structural materials and is a unique characteristic of the low mineral content. Scales from regions of the body with higher mineral content underwent less strengthening, which is most likely the result of interference posed by the mineral crystals to intermolecular bonding. Overall, the results showed that flexible bioinspired composite materials for puncture resistance should enrol constituents and complementary processing that capitalize on interfibril bonds. © 2019 The Author(s) Published by the Royal Society. All rights reserved.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=8626
dc.identifier.doi10.1098/rsif.2018.0775
dc.identifier.issn17425689
dc.identifier.issn17425662
dc.identifier.otherWOS;000456785900020
dc.identifier.otherPUBMED;30958147
dc.identifier.otherSCOPUS;2-s2.0-85061309138
dc.identifier.urihttp://hdl.handle.net/10784/29122
dc.language.isoeng
dc.publisherRoyal Society Publishing
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061309138&doi=10.1098%2frsif.2018.0775&partnerID=40&md5=93af943b8a247e6b07a4fe0ea2a1fef1
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/1742-5689
dc.sourceJOURNAL OF THE ROYAL SOCIETY INTERFACE
dc.subjectArmoreng
dc.subjectBondingeng
dc.subjectCollageneng
dc.subjectFisheng
dc.subjectHydrogeneng
dc.subjectHydrogen bondseng
dc.subjectLaminated compositeseng
dc.subjectMineralseng
dc.subjectOrganic solventseng
dc.subjectToughnesseng
dc.subjectFish scaleeng
dc.subjectInter-molecular bondingeng
dc.subjectMechanical behavioureng
dc.subjectNatural armoureng
dc.subjectPunctureeng
dc.subjectPuncture resistanceseng
dc.subjectStrength and toughnesseng
dc.subjectUniaxial tensionseng
dc.subjectStrain rateeng
dc.titleInterfibril hydrogen bonding improves the strain-rate response of natural armoureng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Colecciones