Meshless Method for the Numerical Solution of Coupled Burgers Equation
Fecha
2022
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad EAFIT
Resumen
The development and interest in numerical techniques for obtaining approximate solutions to partial differential equations have increased very much in the last decades. Among these are meshless methods. Recently radial base functions have been used in meshless methods applied to numerical solutions of partial differential equations, pioneers' works being those of Kansa, Fasshauer, Wendland and Bohamid among others. In this paper, we employ the method, using two RBFs, TPS and MQ, to obtain a numerical solution to coupled Burgers equation. The development and interest in numerical techniques for obtaining approximate solutions to partial differential equations have increased very much in the last decades. Among these are meshless methods. Recently radial base functions have been used in meshless methods applied to numerical solutions of partial differential equations, pioneers' works being those of Kansa, Fasshauer, Wendland and Bohamid among others. In this paper, we employ the method, using two RBFs, TPS and MQ, to obtain a numerical solution to coupled Burgers equation.
Descripción
El desarrollo e interés por las técnicas numéricas para la obtención las soluciones aproximadas a las ecuaciones diferenciales parciales han aumentado mucho en las últimas décadas. Entre estos se encuentran los métodos sin malla. Recientemente se han utilizado funciones de base radial en métodos sin malla aplicados a soluciones numéricas de ecuaciones diferenciales parciales, siendo los trabajos pioneros los de Kansa, Fasshauer, Wendland y Bohamid entre otros. En este artículo, empleamos el método, utilizando dos RBF, TPS y MQ, para obtener una solución numérica a la ecuación de Burgers acoplada.
Palabras clave
Ecuación de Burgers, Splines de placa delgada, Multicuadrático, Método sin malla, Funciones base radial