Limits of quotients of bivariate real analytic functions
dc.citation.epage | 197 | spa |
dc.citation.journalTitle | Journal of Symbolic Computation | spa |
dc.citation.spage | 207 | spa |
dc.citation.volume | 50 | spa |
dc.contributor.author | Molina, Sergio | |
dc.contributor.author | Cadavid Moreno, Carlos Alberto | |
dc.contributor.author | Vélez Caicedo, Juan Diego | |
dc.contributor.department | Universidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y Aplicaciones | |
dc.contributor.eafitauthor | Carlos Cadavid M.(ccadavid@eafit.edu.co) | spa |
dc.contributor.researchgroup | Análisis Funcional y Aplicaciones | spa |
dc.date.accessioned | 2015-03-06T19:20:03Z | |
dc.date.available | 2015-03-06T19:20:03Z | |
dc.date.issued | 2013-03 | |
dc.description.abstract | Necessary and sufficient conditions for the existence of limits of the form lim(x,y)→(a,b) f (x, y)/g(x, y) are given, under the hypothesis that f and g are real analytic functions near the point (a, b), and g has an isolated zero at (a, b) -- The given criterion uses a constructive version of Hensel’s Lemma which could be implemented in a computer algebra system in the case where f and g are polynomials with rational coefficients, or more generally, with coefficients in a real finite extension of the rationals -- A high level description of an algorithm for determining the existence of the limit as well as its computation is provided | spa |
dc.description.abstract | Necessary and sufficient conditions for the existence of limits of the form lim(x,y)→(a,b) f (x, y)/g(x, y) are given, under the hypothesis that f and g are real analytic functions near the point (a, b), and g has an isolated zero at (a, b) -- The given criterion uses a constructive version of Hensel’s Lemma which could be implemented in a computer algebra system in the case where f and g are polynomials with rational coefficients, or more generally, with coefficients in a real finite extension of the rationals -- A high level description of an algorithm for determining the existence of the limit as well as its computation is provided | eng |
dc.identifier.citation | C. Cadavid, S. Molina, J.D. Vélez, Limits of quotients of bivariate real analytic functions, Journal of Symbolic Computation, Volume 50, March 2013, Pages 197-207, ISSN 0747-7171, http://dx.doi.org/10.1016/j.jsc.2012.07.004. (http://www.sciencedirect.com/science/article/pii/S0747717112001204) Keywords: Limits; Real analytic functions; Puiseux series; Henselʼs Lemma | spa |
dc.identifier.doi | 10.1016/j.jsc.2012.07.004 | |
dc.identifier.issn | 0747-7171 | spa |
dc.identifier.uri | http://hdl.handle.net/10784/5066 | |
dc.language.iso | spa | eng |
dc.publisher | ELSEVIER | spa |
dc.relation.ispartof | Journal of Symbolic Computation. Volume 50, March 2013, Pages 197–207 | spa |
dc.relation.uri | http://dx.doi.org/10.1016/j.jsc.2012.07.004 | |
dc.rights | Copyright © 2015 Elsevier B.V | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.local | Acceso restringido | spa |
dc.subject.keyword | Calculus | eng |
dc.subject.keyword | Analytic functions | eng |
dc.subject.keyword | Vector analysis | eng |
dc.subject.keyword | Calculus, integral | eng |
dc.subject.keyword | Sequences (mathematics) | eng |
dc.subject.keyword | Series | eng |
dc.subject.keyword | Límites | spa |
dc.subject.lemb | FUNCIONES ANALÍTICAS | spa |
dc.subject.lemb | CÁLCULO | spa |
dc.subject.lemb | ANÁLISIS VECTORIAL | spa |
dc.subject.lemb | CÁLCULO INTEGRAL | spa |
dc.subject.lemb | DERIVADAS (MATEMÁTICAS) | spa |
dc.subject.lemb | SUCESIONES (MATEMÁTICAS) | spa |
dc.subject.lemb | SERIES (MATEMÁTICAS) | spa |
dc.title | Limits of quotients of bivariate real analytic functions | eng |
dc.type | article | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Artículo | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: