Limits of quotients of bivariate real analytic functions

dc.citation.epage197spa
dc.citation.journalTitleJournal of Symbolic Computationspa
dc.citation.spage207spa
dc.citation.volume50spa
dc.contributor.authorMolina, Sergio
dc.contributor.authorCadavid Moreno, Carlos Alberto
dc.contributor.authorVélez Caicedo, Juan Diego
dc.contributor.departmentUniversidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y Aplicaciones
dc.contributor.eafitauthorCarlos Cadavid M.(ccadavid@eafit.edu.co)spa
dc.contributor.researchgroupAnálisis Funcional y Aplicacionesspa
dc.date.accessioned2015-03-06T19:20:03Z
dc.date.available2015-03-06T19:20:03Z
dc.date.issued2013-03
dc.description.abstractNecessary and sufficient conditions for the existence of limits of the form lim(x,y)→(a,b) f (x, y)/g(x, y) are given, under the hypothesis that f and g are real analytic functions near the point (a, b), and g has an isolated zero at (a, b) -- The given criterion uses a constructive version of Hensel’s Lemma which could be implemented in a computer algebra system in the case where f and g are polynomials with rational coefficients, or more generally, with coefficients in a real finite extension of the rationals -- A high level description of an algorithm for determining the existence of the limit as well as its computation is providedspa
dc.description.abstractNecessary and sufficient conditions for the existence of limits of the form lim(x,y)→(a,b) f (x, y)/g(x, y) are given, under the hypothesis that f and g are real analytic functions near the point (a, b), and g has an isolated zero at (a, b) -- The given criterion uses a constructive version of Hensel’s Lemma which could be implemented in a computer algebra system in the case where f and g are polynomials with rational coefficients, or more generally, with coefficients in a real finite extension of the rationals -- A high level description of an algorithm for determining the existence of the limit as well as its computation is providedeng
dc.identifier.citationC. Cadavid, S. Molina, J.D. Vélez, Limits of quotients of bivariate real analytic functions, Journal of Symbolic Computation, Volume 50, March 2013, Pages 197-207, ISSN 0747-7171, http://dx.doi.org/10.1016/j.jsc.2012.07.004. (http://www.sciencedirect.com/science/article/pii/S0747717112001204) Keywords: Limits; Real analytic functions; Puiseux series; Henselʼs Lemmaspa
dc.identifier.doi10.1016/j.jsc.2012.07.004
dc.identifier.issn0747-7171spa
dc.identifier.urihttp://hdl.handle.net/10784/5066
dc.language.isospaeng
dc.publisherELSEVIERspa
dc.relation.ispartofJournal of Symbolic Computation. Volume 50, March 2013, Pages 197–207spa
dc.relation.urihttp://dx.doi.org/10.1016/j.jsc.2012.07.004
dc.rightsCopyright © 2015 Elsevier B.Vspa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.localAcceso restringidospa
dc.subject.keywordCalculuseng
dc.subject.keywordAnalytic functionseng
dc.subject.keywordVector analysiseng
dc.subject.keywordCalculus, integraleng
dc.subject.keywordSequences (mathematics)eng
dc.subject.keywordSerieseng
dc.subject.keywordLímitesspa
dc.subject.lembFUNCIONES ANALÍTICASspa
dc.subject.lembCÁLCULOspa
dc.subject.lembANÁLISIS VECTORIALspa
dc.subject.lembCÁLCULO INTEGRALspa
dc.subject.lembDERIVADAS (MATEMÁTICAS)spa
dc.subject.lembSUCESIONES (MATEMÁTICAS)spa
dc.subject.lembSERIES (MATEMÁTICAS)spa
dc.titleLimits of quotients of bivariate real analytic functionseng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción: