Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation

dc.citation.epage3423spa
dc.citation.issue69spa
dc.citation.journalTitleApplied Mathematical Sciencesspa
dc.citation.spage3411spa
dc.citation.volume6spa
dc.contributor.authorVillegas Gutiérrez, Jairo Alberto
dc.contributor.authorCastaño B., Jorge
dc.contributor.authorDuarte V., Julio
dc.contributor.authorFierro Y., Esper
dc.contributor.departmentUniversidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y Aplicaciones
dc.contributor.departmentUniversidad Surcolombiana. Departamento de Matemáticas. Neiva, Colombia
dc.contributor.eafitauthorVillegas Gutiérrez, Jairo Albertospa
dc.contributor.researchgroupAnálisis Funcional y Aplicacionesspa
dc.date.accessioned2015-10-02T21:21:01Z
dc.date.available2015-10-02T21:21:01Z
dc.date.issued2012
dc.description.abstractThe development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV).spa
dc.description.abstractThe development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV).eng
dc.identifier.issn1314-7552 (Online)spa
dc.identifier.issn1312-885X (Print)spa
dc.identifier.urihttp://hdl.handle.net/10784/7410
dc.language.isoengeng
dc.publisherHikarispa
dc.relation.ispartofApplied Mathematical Sciences, Vol. 6, 2012, no. 69, 3411 - 3423spa
dc.relation.urihttp://www.m-hikari.com/ams/ams-2012/ams-69-72-2012/villegasAMS69-72-2012.pdf
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.localAcceso abiertospa
dc.subject.keywordKdV equationeng
dc.subject.keywordsolitoneng
dc.subject.keywordwaveleteng
dc.subject.keywordWavelet-Petrov-Galerkin Methodeng
dc.titleWavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equationeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
villegasAMS69-72-2012.pdf
Tamaño:
156.66 KB
Formato:
Adobe Portable Document Format
Descripción: