Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation
dc.citation.epage | 3423 | spa |
dc.citation.issue | 69 | spa |
dc.citation.journalTitle | Applied Mathematical Sciences | spa |
dc.citation.spage | 3411 | spa |
dc.citation.volume | 6 | spa |
dc.contributor.author | Villegas Gutiérrez, Jairo Alberto | |
dc.contributor.author | Castaño B., Jorge | |
dc.contributor.author | Duarte V., Julio | |
dc.contributor.author | Fierro Y., Esper | |
dc.contributor.department | Universidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y Aplicaciones | |
dc.contributor.department | Universidad Surcolombiana. Departamento de Matemáticas. Neiva, Colombia | |
dc.contributor.eafitauthor | Villegas Gutiérrez, Jairo Alberto | spa |
dc.contributor.researchgroup | Análisis Funcional y Aplicaciones | spa |
dc.date.accessioned | 2015-10-02T21:21:01Z | |
dc.date.available | 2015-10-02T21:21:01Z | |
dc.date.issued | 2012 | |
dc.description.abstract | The development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV). | spa |
dc.description.abstract | The development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV). | eng |
dc.identifier.issn | 1314-7552 (Online) | spa |
dc.identifier.issn | 1312-885X (Print) | spa |
dc.identifier.uri | http://hdl.handle.net/10784/7410 | |
dc.language.iso | eng | eng |
dc.publisher | Hikari | spa |
dc.relation.ispartof | Applied Mathematical Sciences, Vol. 6, 2012, no. 69, 3411 - 3423 | spa |
dc.relation.uri | http://www.m-hikari.com/ams/ams-2012/ams-69-72-2012/villegasAMS69-72-2012.pdf | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.local | Acceso abierto | spa |
dc.subject.keyword | KdV equation | eng |
dc.subject.keyword | soliton | eng |
dc.subject.keyword | wavelet | eng |
dc.subject.keyword | Wavelet-Petrov-Galerkin Method | eng |
dc.title | Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation | eng |
dc.type | article | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Artículo | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- villegasAMS69-72-2012.pdf
- Tamaño:
- 156.66 KB
- Formato:
- Adobe Portable Document Format
- Descripción: