Time-dependent Mechanical Response at the Nanoscale

dc.citation.journalTitleMechanics Of Materials
dc.contributor.authorMúnera, J.C.
dc.contributor.authorGoswami, D.
dc.contributor.authorMartinez, R.V.
dc.contributor.authorOssa, E.A.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería de Producciónspa
dc.contributor.researchgroupMateriales de Ingenieríaspa
dc.creatorMúnera, J.C.
dc.creatorGoswami, D.
dc.creatorMartinez, R.V.
dc.creatorOssa, E.A.
dc.date.accessioned2021-04-12T21:26:45Z
dc.date.available2021-04-12T21:26:45Z
dc.date.issued2020-01-01
dc.description.abstractModern nanofabrication processes on metals, polymers, and ceramics often require deforming these materials at strain rates ranging ~101 – 107 s–1. Therefore, there is a need to develop an appropriate methodology capable of measuring and predicting the effects of these deformation rates on the final mechanical response of the nanomaterial being processed. Here we report an experimental study of the indentation response of three materials with different nature and mechanical properties, but with known time-dependent mechanical responses. These materials allow validation of the findings under a wide variety of conditions. One metal (Pb), and two polymers (PMMA and PS), were indented at the sub-20 nm scale using commercial atomic force microscopy (AFM) probes. Based on our experimental findings, we also propose an analytical model for creeping solids in which their nanoscale mechanical behavior is completely described by two components: an elastic component (characterized by the Hertz contact model) and a time-dependent component (characterized by a power-law model). The proposed experimental protocol is easy to implement, and the analytical model can be extended to a large variety of materials. The ability to characterize the time-dependence of the mechanical response of different materials at the nanoscale will enable a better estimation of the effect of manufacturing processes on the properties and performance of nanomaterials. © 2020 Elsevier Ltdeng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=11924
dc.identifier.doi10.1016/j.mechmat.2020.103443
dc.identifier.issn01676636
dc.identifier.issn18727743
dc.identifier.otherWOS;000556753500027
dc.identifier.otherSCOPUS;2-s2.0-85085273058
dc.identifier.urihttp://hdl.handle.net/10784/29131
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85085273058&doi=10.1016%2fj.mechmat.2020.103443&partnerID=40&md5=43071b13514e4c4209af90b724f56559
dc.rightsElsevier B.V.
dc.sourceMechanics Of Materials
dc.subjectAnalytical modelseng
dc.subjectDeformationeng
dc.subjectPolymerseng
dc.subjectStrain rateeng
dc.subjectDeformation rateseng
dc.subjectElastic componentseng
dc.subjectExperimental protocolseng
dc.subjectHertz contact modeleng
dc.subjectManufacturing processeng
dc.subjectMechanical behavioreng
dc.subjectMechanical responseeng
dc.subjectNanofabrication processeng
dc.subjectNanostructured materialseng
dc.titleTime-dependent Mechanical Response at the Nanoscaleeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
1-s2.0-S0167663620301083-main.pdf
Tamaño:
2.07 MB
Formato:
Adobe Portable Document Format
Descripción:

Colecciones