Stock Market Forecasting : Comparing Machine Learning and Deep Learning with Risk-Return Model Selection and Evaluation in a Walk-forward Approach
dc.contributor.advisor | Olarte Hernández, Tomás | |
dc.contributor.author | Castro Marín, Carlos Andrés | |
dc.contributor.author | Olarte Hernández, Tomás | |
dc.coverage.spatial | Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | eng |
dc.creator.degree | Magíster en Ciencias de Datos y Analítica | spa |
dc.creator.email | ccastro6@eafit.edu.co | |
dc.date.accessioned | 2024-11-01T16:59:15Z | |
dc.date.available | 2024-11-01T16:59:15Z | |
dc.date.issued | 2024 | |
dc.description.abstract | This study compares the effectiveness of machine learning and deep learning algorithms in forecasting stock market direction using daily market data of Apple Inc. stock. We aim to determine if these algorithms can identify repeatable patterns across time using price and volume history and assess which are most capable. To ensure robustness, we employ a walk-forward validation approach to maintain the temporal dimension of the data and simulate real trading conditions. This method allows us to test models across different market conditions and measure their predictive power. We prioritize model selection and evaluation based on financial return and risk metrics, focusing on profitability rather than traditional machine learning performance metrics, which often do not correlate with financial outcomes. Our findings show that traditional machine learning algorithms, specifically Random Forest, outperform deep learning models under the selected asset and conditions tested. Machine learning models exceed the stock benchmark regarding Sharpe ratio, while deep learning models struggle to manage risk effectively, leading to poorer performance. This discrepancy is likely due to the complex solution space deep learning algorithms navigate to optimize and the amount of data required by these models. However, we hypothesize that the latter could improve its performance if tested with different architectures and hyperparameters, including newly developed transformer attention-based architectures and models such as TimeGPT and others, shown in the related work section. | |
dc.identifier.uri | https://hdl.handle.net/10784/34761 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad EAFIT | spa |
dc.publisher.department | Escuela de Ciencias Aplicadas e Ingeniería. Área Computación y Analítica | spa |
dc.publisher.place | Medellín | |
dc.publisher.program | Maestría en Ciencias de los Datos y Analítica | spa |
dc.rights | Todos los derechos reservados | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | |
dc.rights.local | Acceso cerrado | |
dc.subject | Aprendizaje automático | |
dc.subject | Redes neuronales | |
dc.subject | Aprendizaje de máquina | |
dc.subject | Mercados financieros | |
dc.subject | Analítica predictiva | |
dc.subject | Mercado de acciones | |
dc.subject.keyword | Stock market forecasting | |
dc.subject.keyword | Machine learning | |
dc.subject.keyword | Deep learning | |
dc.subject.keyword | Algorithmic trading | |
dc.subject.keyword | Walkforward | |
dc.subject.keyword | Financial metrics | |
dc.subject.keyword | Predictive analytics | |
dc.subject.keyword | Financial markets | |
dc.subject.lemb | CIENCIA DE LA INFORMACIÓN | |
dc.subject.lemb | ACCIONES (BOLSA) | |
dc.subject.lemb | APRENDIZAJE AUTOMÁTICO (INTELIGENCIA ARTIFICIAL) | |
dc.subject.lemb | RIESGO (FINANZAS) | |
dc.title | Stock Market Forecasting : Comparing Machine Learning and Deep Learning with Risk-Return Model Selection and Evaluation in a Walk-forward Approach | |
dc.type | masterThesis | eng |
dc.type | info:eu-repo/semantics/masterThesis | eng |
dc.type.hasVersion | acceptedVersion | eng |
dc.type.local | Tesis de Maestría | spa |
dc.type.spa | Artículo |
Archivos
Bloque original
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- formulario_autorizacion_publicacion_obras_carlos_castro.pdf
- Tamaño:
- 487.89 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Formulario de autorización de publicación de obras
No hay miniatura disponible
- Nombre:
- carta_aprobacion_trabajo_grado - Carlos Castro.pdf
- Tamaño:
- 501.44 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta de aprobación de tesis de grado
No hay miniatura disponible
- Nombre:
- Stock Market Forecasting - Comparing Machine Learning and Deep Learning with Risk-Return Model.pdf
- Tamaño:
- 521.41 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: