Improving DFT-based approaches to study CO2 electroreduction on transition metals

dc.contributor.advisorCalle Vallejo, Federicospa
dc.contributor.advisorBuiles Toro, Santiagospa
dc.contributor.authorRendón Calle, Jessica Alejandra
dc.coverage.spatialMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.creator.degreeDoctor in Engineeringspa
dc.creator.emailjrendon8@eafit.edu.cospa
dc.creator.grantorUniversidad EAFITspa
dc.date.accessioned2021-04-20T17:33:11Z
dc.date.available2021-04-20T17:33:11Z
dc.date.issued2021
dc.description.abstractThe industrial-scale conversion of electricity obtained from renewable sources is crucial to achieve an economy based on renewable energy. In that scenario, the electrochemical reduction of CO2, offers the possibility of producing some of the most demanded fuels and chemicals in a sustainable way. However, its efficient implementation on industrial scale is limited by factors as the high energy requirements for the product formation, the low selectivity and efficiency of electrolyzers, and the long-term deactivation of the catalysts. Understanding the many aspects that influence the reaction behavior is a challenging task because, apart from solvent and electrolyte effects, there are multiple intermediates, pathways, and products possible under similar operating conditions. In the recent decades this research field has been highly active in theory and experiments, and many studies have focused on finding the main factors that enhance the reaction performance. In this thesis, the electrochemical CO2 reduction is studied using state-of-the-art density functional theory (DFT) simulations, incorporating solvation effects as a crucial factor for improving thermodynamic predictions. To this end, a systematic micro-solvation method was developed to determine the number of hydrogen-bonded water molecules in the first solvation shell and the energetic stabilization granted by those hydrogen bonds. The reduction of CO2 to CO, CH4 and CH3OH on Cu, was considered to test this method, finding very good agreement with experiments without the need to include calculations of reaction kinetics. The estimation of solvation contributions for the CO2 reduction to CO has been extended to other transition metals such as Ag, Au, and Zn, finding significant variations between solvation corrections for the same adsorbates on different metals and finding very good agreement with experimental results. The increase in accuracy of the predictions make possible the development of a semiempirical method to explain the deactivation evidenced experimentally on Cu electrodes during CO2RR to CH4.spa
dc.formatapplication/pdfeng
dc.identifier.ddc660.297 R397
dc.identifier.urihttp://hdl.handle.net/10784/29605
dc.language.isospaspa
dc.publisherUniversidad EAFITspa
dc.publisher.departmentEscuela de Ingenieríaspa
dc.publisher.placeMedellínspa
dc.publisher.programDoctorado en Ingenieríaspa
dc.rightsTodos los derechos reservadosspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.localAcceso abiertospa
dc.subjectReducción electroquímica del CO2spa
dc.subjectElectrocatálisisspa
dc.subjectCálculos DFTspa
dc.subjectEnergías de adsorciónspa
dc.subjectCorrecciones de solvataciónspa
dc.subjectMecanismos de reacciónspa
dc.subjectCobrespa
dc.subjectDesactivaciónspa
dc.subjectFactor de simetríaspa
dc.subject.keywordCO2 electroreductionspa
dc.subject.keywordCO2RRspa
dc.subject.keywordElectrocatalysisspa
dc.subject.keywordDFT calculationsspa
dc.subject.keywordAdsorption energiesspa
dc.subject.keywordAdsorbate-solvent interactionsspa
dc.subject.keywordSolvation correctionsspa
dc.subject.keywordReaction pathwaysspa
dc.subject.keywordCopperspa
dc.subject.keywordTransition metalsspa
dc.subject.keywordCompeting reaction mechanismsspa
dc.subject.keywordDeactivationspa
dc.subject.keywordSymmetry factorspa
dc.subject.lembELECTROQUÍMICAspa
dc.subject.lembANÁLISIS ELECTROQUÍMICOspa
dc.subject.lembMETALES DE TRANSICIÓNspa
dc.subject.lembTERMODINÁMICAspa
dc.titleImproving DFT-based approaches to study CO2 electroreduction on transition metalsspa
dc.typedoctoralThesiseng
dc.typeinfo:eu-repo/semantics/doctoralThesiseng
dc.type.hasVersionacceptedVersioneng
dc.type.localTesis Doctoralspa

Archivos

Bloque original
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
RendonCalle_JessicaAlejandra_2021.pdf
Tamaño:
3.34 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
No hay miniatura disponible
Nombre:
carta_aprobacion_trabajo_grado_eafit.pdf
Tamaño:
201.37 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta de aprobación de tesis de grado
No hay miniatura disponible
Nombre:
formulario_autorizacion_publicacion_obras.pdf
Tamaño:
4.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Formulario de autorización de publicación de obras
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción: