A q-exponential statistical Banach manifold
dc.citation.epage | 466 | spa |
dc.citation.issue | 2 | spa |
dc.citation.journalTitle | Journal of Mathematical Analysis and Applications | spa |
dc.citation.spage | 476 | spa |
dc.citation.volume | 398 | spa |
dc.contributor.author | Quiceno Echavarría, Héctor Román | |
dc.contributor.author | Loaiza Ossa, Gabriel Ignacio | |
dc.contributor.department | department:Universidad EAFIT. Escuela de Ciencias. Grupo de Investigación Análisis Funcional y Aplicaciones | |
dc.contributor.eafitauthor | Héctor R. Quiceno (hquiceno@eafit.edu.co) | spa |
dc.contributor.eafitauthor | Gabriel Loaiza (gloaiza@eafit.edu.co) | spa |
dc.contributor.researchgroup | Análisis Funcional y Aplicaciones | spa |
dc.date.accessioned | 2015-04-24T16:18:49Z | |
dc.date.available | 2015-04-24T16:18:49Z | |
dc.date.issued | 2013-02 | |
dc.description.abstract | Letµbe a given probability measure andMµ the set ofµ-equivalent strictly positive probability densities -- In this paper we construct a Banach manifold on Mµ, modeled on the space L∞(p · µ) where p is a reference density, for the non-parametric q-exponential statistical models (Tsallis’s deformed exponential), where 0 < q < 1 is any real number -- This family is characterized by the fact that when q → 1, then the non-parametric exponential models are obtained and the manifold constructed by Pistone and Sempi is recovered, up to continuous embeddings on the modeling space -- The coordinate mappings of the manifold are given in terms of Csiszár’s Φ-divergences; the tangent vectors are identified with the one-dimensional q-exponential models and q-deformations of the score function | spa |
dc.description.abstract | Letµbe a given probability measure andMµ the set ofµ-equivalent strictly positive probability densities -- In this paper we construct a Banach manifold on Mµ, modeled on the space L∞(p · µ) where p is a reference density, for the non-parametric q-exponential statistical models (Tsallis’s deformed exponential), where 0 < q < 1 is any real number -- This family is characterized by the fact that when q → 1, then the non-parametric exponential models are obtained and the manifold constructed by Pistone and Sempi is recovered, up to continuous embeddings on the modeling space -- The coordinate mappings of the manifold are given in terms of Csiszár’s Φ-divergences; the tangent vectors are identified with the one-dimensional q-exponential models and q-deformations of the score function | eng |
dc.identifier.citation | G. Loaiza, H.R. Quiceno, A -exponential statistical Banach manifold, Journal of Mathematical Analysis and Applications, Volume 398, Issue 2, 15 February 2013, Pages 466-476, ISSN 0022-247X, http://dx.doi.org/10.1016/j.jmaa.2012.08.046. (http://www.sciencedirect.com/science/article/pii/S0022247X12006981) | spa |
dc.identifier.doi | 10.1016/j.jmaa.2012.08.046 | |
dc.identifier.issn | 0022-247X | spa |
dc.identifier.uri | http://hdl.handle.net/10784/5245 | |
dc.language.iso | eng | eng |
dc.publisher | ELSEVIER | spa |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications Volume 398, Issue 2, 15 February 2013, Pages 466–476 | spa |
dc.relation.uri | http://dx.doi.org/10.1016/j.jmaa.2012.08.046 | |
dc.rights | Copyright © 2012 Elsevier Ltd. All rights reserved. | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.local | Acceso restringido | spa |
dc.subject.keyword | Information theory | eng |
dc.subject.keyword | Entropy (information theory) | eng |
dc.subject.keyword | Banach spaces | eng |
dc.subject.keyword | Quantum physical | eng |
dc.subject.keyword | Mathematical analysis | eng |
dc.subject.keyword | Geometry, differential | eng |
dc.subject.keyword | Analytic functions | eng |
dc.subject.keyword | Espacios de Orlicz | spa |
dc.subject.lemb | TEORÍA DE LA INFORMACIÓN | spa |
dc.subject.lemb | ENTROPÍA (TEORÍA DE LA INFORMACIÓN) | spa |
dc.subject.lemb | ESPACIOS DE BANACH | spa |
dc.subject.lemb | FÍSICA CUÁNTICA | spa |
dc.subject.lemb | ANÁLISIS MATEMÁTICO | spa |
dc.subject.lemb | GEOMETRÍA DIFERENCIAL | spa |
dc.subject.lemb | FUNCIONES ANALÍTICAS | spa |
dc.title | A q-exponential statistical Banach manifold | eng |
dc.type | article | eng |
dc.type | info:eu-repo/semantics/article | eng |
dc.type | info:eu-repo/semantics/publishedVersion | eng |
dc.type | publishedVersion | eng |
dc.type.local | Artículo | spa |