Estimation of fundamental diagrams in large-scale traffic networks with scarce sensor measurements

dc.contributor.authorMontoya O.L.Q.
dc.contributor.authorCanudas-De-Wit C.
dc.contributor.departmentUniversidad EAFIT. Departamento de Cienciasspa
dc.contributor.researchgroupModelado Matemáticospa
dc.creatorMontoya O.L.Q.
dc.creatorCanudas-De-Wit C.
dc.date.accessioned2021-04-12T14:11:50Z
dc.date.available2021-04-12T14:11:50Z
dc.date.issued2018-01-01
dc.description.abstractThe macroscopic fundamental diagram (MFD) relates space-mean flow density and the speed of an entire network. We present a method for the estimation of a 'normalized' MFD with the goal to compute specific Fundamental Diagram in places where loop sensors data is no available. The methodology allows using some data from different points in the city and possibly combining several kinds of information. To this aim, we tackle at least three major concerns: the data dispersion, the sparsity of the data, and the role of the link (with data) within the network. To preserve the information we decided to treat it as two-dimensional signals (images), so we based our estimation algorithm on image analysis, preserving data veracity until the last steps (instead of first matching curves that induce a first approximation). Then we use image classification and filtering tools for merging of main features and scaling. Finally, just the Floating Car Data (FCD) is used to map back the general form to the specific road where sensors are missing. We obtained a representation of the street by means of its likelihood with other links within the same network. © 2018 IEEE.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=8627
dc.identifier.doi10.1109/ITSC.2018.8569817
dc.identifier.isbn9781728103235
dc.identifier.otherSCOPUS;2-s2.0-85060491477
dc.identifier.urihttp://hdl.handle.net/10784/27906
dc.language.isoengeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060491477&doi=10.1109%2fITSC.2018.8569817&partnerID=40&md5=08392db7e40db1330775dda489eb45c8
dc.rightsInstitute of Electrical and Electronics Engineers Inc.
dc.sourceIeee Conference On Intelligent Transportation Systems, Proceedings, Itsc
dc.subject.keywordApproximation algorithmseng
dc.subject.keywordIntelligent systemseng
dc.subject.keywordData dispersioneng
dc.subject.keywordEstimation algorithmeng
dc.subject.keywordFloating car dataeng
dc.subject.keywordFundamental diagrameng
dc.subject.keywordMacroscopic fundamental diagrameng
dc.subject.keywordSensor measurementseng
dc.subject.keywordTraffic networkseng
dc.subject.keywordTwo-dimensional signalseng
dc.subject.keywordIntelligent vehicle highway systemseng
dc.titleEstimation of fundamental diagrams in large-scale traffic networks with scarce sensor measurementseng
dc.typeinfo:eu-repo/semantics/conferencePapereng
dc.typeconferencePapereng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localDocumento de conferenciaspa

Archivos