Approximation of the mechanical response of large lattice domains using homogenization and design of experiments

dc.citation.journalTitleApplied Sciences-Baseleng
dc.contributor.authorMontoya-Zapata D.
dc.contributor.authorAcosta D.A.
dc.contributor.authorCortés C.
dc.contributor.authorPareja-Corcho J.
dc.contributor.authorMoreno A.
dc.contributor.authorPosada J.
dc.contributor.authorRuiz-Salguero O.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería de Procesosspa
dc.contributor.researchgroupDesarrollo y Diseño de Procesosspa
dc.date.accessioned2021-04-12T19:06:23Z
dc.date.available2021-04-12T19:06:23Z
dc.date.issued2020-01-01
dc.description.abstractLattice-based workpieces contain patterned repetition of individuals of a basic topology (Schwarz, ortho-walls, gyroid, etc.) with each individual having distinct geometric grading. In the context of the design, analysis and manufacturing of lattice workpieces, the problem of rapidly assessing the mechanical behavior of large domains is relevant for pre-evaluation of designs. In this realm, two approaches can be identified: (1) numerical simulations which usually bring accuracy but limit the size of the domains that can be studied due to intractable data sizes, and (2) material homogenization strategies that sacrifice precision to favor efficiency and allow for simulations of large domains. Material homogenization synthesizes diluted material properties in a lattice, according to the volume occupancy factor of such a lattice. Preliminary publications show that material homogenization is reasonable in predicting displacements, but is not in predicting stresses (highly sensitive to local geometry). As a response to such shortcomings, this paper presents a methodology that systematically uses design of experiments (DOE) to produce simple mathematical expressions (meta-models) that relate the stress-strain behavior of the lattice domain and the displacements of the homogeneous domain. The implementation in this paper estimates the von Mises stress in large Schwarz primitive lattice domains under compressive loads. The results of our experiments show that (1) material homogenization can efficiently and accurately approximate the displacements field, even in complex lattice domains, and (2) material homogenization and DOE can produce rough estimations of the von Mises stress in large domains (more than 100 cells). The errors in the von Mises stress estimations reach 42% for domains of up to 24 cells. This result means that coarse stress-strain estimations may be possible in lattice domains by combining DOE and homogenized material properties. This option is not suitable for precise stress prediction in sensitive contexts wherein high accuracy is needed. Future work is required to refine the meta-models to improve the accuracies of the estimations. © 2020 by the authors.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=12197
dc.identifier.doi10.3390/app10113858
dc.identifier.issn20763417
dc.identifier.issn14545101
dc.identifier.otherWOS;000543385900195
dc.identifier.otherSCOPUS;2-s2.0-85086117403
dc.identifier.urihttp://hdl.handle.net/10784/28281
dc.language.isoeng
dc.publisherUniversitatea Politehnica Bucuresti
dc.relationDOI;10.3390/app10113858
dc.relationWOS;000543385900195
dc.relationSCOPUS;2-s2.0-85086117403
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85086117403&doi=10.3390%2fapp10113858&partnerID=40&md5=d6e96d3a7398d22ac3db62d85e9df9b8
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/2076-3417
dc.sourceApplied Sciences-Basel
dc.subjectDesign of experimentseng
dc.subjectHomogenizationeng
dc.subjectLattice structureseng
dc.subjectMechanical characterizationeng
dc.subjectModeling and simulationeng
dc.subjectSchwarz primitiveeng
dc.titleApproximation of the mechanical response of large lattice domains using homogenization and design of experimentseng
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
applsci-10-03858-v2.pdf
Tamaño:
3.42 MB
Formato:
Adobe Portable Document Format
Descripción:

Colecciones