Funciones de Morse minimales en el espacio dodecaédrico de Poincaré, vía la Ecuación del Calor
dc.contributor.advisor | Cadavid Moreno, Carlos Alberto | |
dc.contributor.author | Bernal Vera, Jhon Willington | |
dc.coverage.spatial | Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | eng |
dc.creator.degree | Magíster en Matemáticas Aplicadas | spa |
dc.creator.email | jbernal6@eafit.edu.co | spa |
dc.date.accessioned | 2015-05-28T15:21:39Z | |
dc.date.available | 2015-05-28T15:21:39Z | |
dc.date.issued | 2014 | |
dc.description.abstract | Let (M,g) be a compact, connected, without boundary riemannian manifold that is homogeneous, i.e. each pair of points p, q 2M have isometric neighborhoods -- This thesis is a another step towards an understanding of the extent to which it is true that for each “generic” initial condition f0, the solution to @f/@t = gf, f (·, 0) = f0 is such that for sufficiently large t, f (·, 0) is a minimal Morse function, i.e., a Morse function whose total number of critical points is the minimal possible on M -- In this thesis we show that for the Poincaré dodecahedral space this seems to hold if one allows a generic small perturbation of the metric -- Concretely, we consider an approximation of the spherical Poincaré dodecahedral space by a suitably weighted graph, calculate the eigenvalues and eigenvectors of its laplacian oparator, and study the critical point structure of eigenvectors of some of the first nonzero eigenvalues, and observe that they have the least possible number of critical points | spa |
dc.identifier.uri | http://hdl.handle.net/10784/5397 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad EAFIT | spa |
dc.publisher.department | Escuela de Ciencias. Departamento de Ciencias Básicas | spa |
dc.publisher.program | Maestría en Matemáticas Aplicadas | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.local | Acceso abierto | spa |
dc.subject | Esfera de homología de Poincaré | spa |
dc.subject | Poincaré, Henri (1854 - 1912) | spa |
dc.subject.keyword | Morse theory | spa |
dc.subject.keyword | Sphere | spa |
dc.subject.keyword | Heat equation | spa |
dc.subject.keyword | Kernel functions | spa |
dc.subject.keyword | Geometry, riemannian | spa |
dc.subject.keyword | Isometrics (Mathematics) | spa |
dc.subject.keyword | Differential topology | spa |
dc.subject.keyword | Critical point theory (mathematical analysis) | spa |
dc.subject.keyword | Graph theory | spa |
dc.subject.lemb | TEORÍA DE MORSE | spa |
dc.subject.lemb | ESFERA | spa |
dc.subject.lemb | TOPOLOGÍA | spa |
dc.subject.lemb | ECUACIÓN DEL CALOR | spa |
dc.subject.lemb | FUNCIONES DE KERNEL | spa |
dc.subject.lemb | GEOMETRÍA DE RIEMANN | spa |
dc.subject.lemb | ISOMETRÍA (MATEMÁTICAS) | spa |
dc.subject.lemb | TOPOLOGÍA DIFERENCIAL | spa |
dc.subject.lemb | TEORÍA DEL PUNTO CRÍTICO (ANÁLISIS MATEMÁTICO) | spa |
dc.subject.lemb | TEORÍA DE GRAFOS | spa |
dc.title | Funciones de Morse minimales en el espacio dodecaédrico de Poincaré, vía la Ecuación del Calor | spa |
dc.type | masterThesis | eng |
dc.type.hasVersion | acceptedVersion | eng |
dc.type.local | Tesis de Maestría | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- JhonBernalVera_2014.pdf
- Tamaño:
- 10.66 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Texto Completo
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 51.7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: