Consumed fatigue life assessment of composite material structures by optical surface roughness inspection

dc.contributor.authorZuluaga, P.
dc.contributor.authorFrövel, M.
dc.contributor.authorRestrepo, R.
dc.contributor.authorTrallero, R.
dc.contributor.authorAtienza, R.
dc.contributor.authorPintado, J.M.
dc.contributor.authorBelenguer, T.
dc.contributor.authorSalazar, F.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ciencias Básicasspa
dc.contributor.researchgroupÓptica Aplicadaspa
dc.date.accessioned2021-04-12T14:18:29Z
dc.date.available2021-04-12T14:18:29Z
dc.date.issued2013-01-01
dc.description.abstractA strong knowledge of the fatigue state of highly advanced carbon fiber reinforced polymer composite (CFRP) structures is essential to predict the residual life and optimize intervals of structural inspection, repairs, and/or replacements. Current techniques are based mostly on measurement of structural loads throughout the service life by electric strain gauge sensors. These sensors are affected by extreme environmental conditions and by fatigue loads in such a way that the sensors and their systems require exhaustive maintenance throughout system life. This work is focused on providing a new technique to evaluate the fatigue state of CFRP structures by means of evaluating the surface roughness variation due to fatigue damage. The surface roughness is a property that can be measured in the field by optical techniques such as speckle and could be a useful tool for structural health monitoring. The relation between surface roughness and fatigue life has been assessed on CFRP test specimens. A tensile fatigue load with an R=0.1 (T-T) and a maximum load of 60% of the material ultimate strength has been applied. The surface roughness of the specimens has been determined from the surface topography measured by a high precision confocal microscope. Results show that the surface roughness of the specimens increases with the accumulation of fatigue cycles in such a way that the roughness could be taken into account as a fatigue damage metrics for CFRP. © (2013) Trans Tech Publications.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=5500
dc.identifier.doi10.4028/www.scientific.net/KEM.569-570.88
dc.identifier.issn10139826
dc.identifier.otherWOS;000326409000011
dc.identifier.urihttp://hdl.handle.net/10784/27974
dc.language.isoengeng
dc.publisherTrans Tech Publications Ltd.
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/1013-9826
dc.sourceKey Engineering Materials
dc.subject.keywordCarbon fiber reinforced polymer compositeeng
dc.subject.keywordComposite material structureeng
dc.subject.keywordEnvironmental conditionseng
dc.subject.keywordFatigue life assessmenteng
dc.subject.keywordOptical surface roughnesseng
dc.subject.keywordRoughness variationeng
dc.subject.keywordStrain gauge sensorseng
dc.subject.keywordStructural inspectionseng
dc.subject.keywordCarbon fiber reinforced plasticseng
dc.subject.keywordComposite materialseng
dc.subject.keywordDamage detectioneng
dc.subject.keywordFatigue damageeng
dc.subject.keywordSensorseng
dc.subject.keywordStrength of materialseng
dc.subject.keywordStructural health monitoringeng
dc.subject.keywordSurface roughnesseng
dc.subject.keywordCarbon Fiberseng
dc.subject.keywordCompositeseng
dc.subject.keywordFatigueeng
dc.subject.keywordSensorseng
dc.titleConsumed fatigue life assessment of composite material structures by optical surface roughness inspectioneng
dc.typeinfo:eu-repo/semantics/conferencePapereng
dc.typeconferencePapereng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localDocumento de conferenciaspa

Archivos