Resistance of teeth restored with prefabricated posts to maximum intercuspidation loads, mastication and bruxism

Fecha

2013-01-01

Título de la revista

ISSN de la revista

Título del volumen

Editor

Editorial Ciencias Medicas

Resumen

Objective: using the finite element method, determine the resistance of teeth restored with prefabricated posts to maximum static intercuspidation loads, cyclical mastication loads and bruxism, and analyze the effect of periodontal loss on resistance by restorations. Methods: using the finite element method, an in vitro study was conducted of teeth with periodontal loss rehabilitated with prefabricated glass fiber, carbon and titanium posts. Reconstruction of the teeth was based on tomographic images from a periodontically healthy patient. Results: it was shown that rehabilitations did not tend to yield to static loads, irrespective of post material or the degree of periodontal loss. For bruxism and 4 mm periodontal loss, dentin durability was 60 000 cycles, irrespective of post material. For mastication loads and a healthy periodont, dentin failure occurs at 100 000 cycles with titanium posts, 200 000 cycles with carbon fiber posts, and 1 100 000 cycles with glass fiber posts. For 2 mm periodontal loss, dentin durability decreased to 4 000 cycles with titanium posts, 5 000 cycles with carbon fiber posts, and 7 000 cycles with glass fiber posts. For 4 mm periodontal loss, dentin durability is estimated at 1 000 cycles, irrespective of post material. Conclusions: restorations with glass fiber, carbon and titanium prefabricated posts do not yield to maximum static intercuspidation loads, irrespective of the degree of periodontal loss. Prefabricated posts exhibit endless resistance to cyclic loads. Dentin is the structure most severely affected by such events. © 2013 1995, Editorial Ciencias médicas.

Descripción

Palabras clave

Alveolar bone loss, Bruxism, Cyclic load, Finite element analysis, Posts

Citación

Colecciones