Modeling, simulation, and control of the spacecraft attitude dynamics

dc.citation.epage14spa
dc.citation.issue01spa
dc.citation.journalTitleCuadernos de Ingeniería Matemáticaspa
dc.citation.spage1spa
dc.citation.volume01spa
dc.contributor.affiliationUniversidad EAFIT, School of Sciences, Department of Mathematical Sciencesspa
dc.contributor.authorOcampo, Carlos
dc.coverage.spatialMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.date.accessioned2021-06-10T20:36:57Z
dc.date.available2021-06-10T20:36:57Z
dc.date.issued2021-03-26
dc.description.abstractBased on the three-dimensional dynamics of a rigid body and Newton’s laws, the simplified dynamics of a spacecraft is studied and described through the systematical representation, mathematical modeling and also by a block diagram representation, to finally simulates the spacecraft dynamics in the Matlab programming environment called Simulink. It is paramount to be able to identify and recognize the attitude (often represented with the Euler angles) and position variables like the degrees of freedom (DOF) of the system and also the linear behavior. All this to conclude up about the non-linear behavior presented by the accelerations, velocities, positions and Euler angles (attitude) when those mentioned are plotted against time. In addition to this, the linearized system is found in order to facilitate the control analysis and stability analysis, at using linear analysis tools of Simulink and concepts like controllability and observability, reaching the point of determining under the previous concepts to proceed with the control design phase. Lastly, an uncertainty and sensitivity analysis is realized, by means the Monte-Carlo and the Linear regression method (in Simulink too), to find the torque like critical model input, since it has the greatest effect on the response variables in the system; and thus finally, to implement the Linear Quadratic Regulator (LQR) controller, at using the lqr Matlab functionspa
dc.formatapplication/pdfeng
dc.identifier.urihttp://hdl.handle.net/10784/29847
dc.language.isoengspa
dc.publisherUniversidad EAFITspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.localAcceso abiertospa
dc.subject.keywordAttitudespa
dc.subject.keywordMathematical modelen
dc.subject.keywordBlock diagramen
dc.subject.keywordSimulationen
dc.subject.keywordLinearizationen
dc.subject.keywordStabilityen
dc.subject.keywordControllability and observabilityen
dc.subject.keywordUncertainty and sensitivityen
dc.subject.keywordLinear and angular momentum conservationen
dc.subject.keywordEuler anglesen
dc.subject.keywordMonte-Carlo Methoden
dc.subject.keywordLinear Quadratic Regulatoren
dc.subject.keywordSimulinken
dc.titleModeling, simulation, and control of the spacecraft attitude dynamicsspa
dc.typeinfo:eu-repo/semantics/publishedVersionspa
dc.type.localArtículospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Modeling, simulation, and control of the spacecraft attitude dynamics.pdf
Tamaño:
2.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Main article
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción: