Modeling, simulation, and control of the spacecraft attitude dynamics
dc.citation.epage | 14 | spa |
dc.citation.issue | 01 | spa |
dc.citation.journalTitle | Cuadernos de Ingeniería Matemática | spa |
dc.citation.spage | 1 | spa |
dc.citation.volume | 01 | spa |
dc.contributor.affiliation | Universidad EAFIT, School of Sciences, Department of Mathematical Sciences | spa |
dc.contributor.author | Ocampo, Carlos | |
dc.coverage.spatial | Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | |
dc.date.accessioned | 2021-06-10T20:36:57Z | |
dc.date.available | 2021-06-10T20:36:57Z | |
dc.date.issued | 2021-03-26 | |
dc.description.abstract | Based on the three-dimensional dynamics of a rigid body and Newton’s laws, the simplified dynamics of a spacecraft is studied and described through the systematical representation, mathematical modeling and also by a block diagram representation, to finally simulates the spacecraft dynamics in the Matlab programming environment called Simulink. It is paramount to be able to identify and recognize the attitude (often represented with the Euler angles) and position variables like the degrees of freedom (DOF) of the system and also the linear behavior. All this to conclude up about the non-linear behavior presented by the accelerations, velocities, positions and Euler angles (attitude) when those mentioned are plotted against time. In addition to this, the linearized system is found in order to facilitate the control analysis and stability analysis, at using linear analysis tools of Simulink and concepts like controllability and observability, reaching the point of determining under the previous concepts to proceed with the control design phase. Lastly, an uncertainty and sensitivity analysis is realized, by means the Monte-Carlo and the Linear regression method (in Simulink too), to find the torque like critical model input, since it has the greatest effect on the response variables in the system; and thus finally, to implement the Linear Quadratic Regulator (LQR) controller, at using the lqr Matlab function | spa |
dc.format | application/pdf | eng |
dc.identifier.uri | http://hdl.handle.net/10784/29847 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad EAFIT | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.local | Acceso abierto | spa |
dc.subject.keyword | Attitude | spa |
dc.subject.keyword | Mathematical model | en |
dc.subject.keyword | Block diagram | en |
dc.subject.keyword | Simulation | en |
dc.subject.keyword | Linearization | en |
dc.subject.keyword | Stability | en |
dc.subject.keyword | Controllability and observability | en |
dc.subject.keyword | Uncertainty and sensitivity | en |
dc.subject.keyword | Linear and angular momentum conservation | en |
dc.subject.keyword | Euler angles | en |
dc.subject.keyword | Monte-Carlo Method | en |
dc.subject.keyword | Linear Quadratic Regulator | en |
dc.subject.keyword | Simulink | en |
dc.title | Modeling, simulation, and control of the spacecraft attitude dynamics | spa |
dc.type | info:eu-repo/semantics/publishedVersion | spa |
dc.type.local | Artículo | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Modeling, simulation, and control of the spacecraft attitude dynamics.pdf
- Tamaño:
- 2.44 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Main article
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: