Supervised Statistical Methods to Identify Credit Acceptance Rate
dc.citation.epage | 27 | spa |
dc.citation.issue | 01 | spa |
dc.citation.journalTitle | Cuadernos de Ingeniería Matemática | spa |
dc.citation.spage | 1 | spa |
dc.citation.volume | 01 | spa |
dc.contributor.affiliation | Universidad Eafit, School of Sciences, Department of Mathematical Sciences | spa |
dc.contributor.author | Yusty, Valentina | |
dc.contributor.author | Laniado, Henry | |
dc.coverage.spatial | Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | |
dc.date.accessioned | 2021-06-10T20:46:01Z | |
dc.date.available | 2021-06-10T20:46:01Z | |
dc.date.issued | 2021-04-10 | |
dc.description.abstract | Since incorrect decisions can have detrimental effects on financial institutions, the possibility for these to forecast business failures becomes indispensable. In the financial domain, the focus of research problems rarely revolves around the identification of the clients who desist their credit offering, but rather on bankruptcy prediction and credit scoring. The general objective of this paper revolves around the implementation of supervised machine learning algorithms that will allow CrediOrbe, a credit company, to target customers whose profile assimilates those who desist their credit offering. Machine learning algorithms have been greatly studied as tools to aid decisions makers in the realm of finance. Performance measurements are calculated and analyzed through the use of statistical classification measurements. Suggestions for further research are provided | spa |
dc.format | application/pdf | eng |
dc.identifier.uri | http://hdl.handle.net/10784/29850 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Eafit | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.local | Acceso abierto | spa |
dc.subject.keyword | Machine learning, credit scoring , financial institutions, statistical classification measurements | spa |
dc.subject.keyword | Credit scoring | en |
dc.subject.keyword | Financial institutions | en |
dc.subject.keyword | Statistical classification measurements | en |
dc.title | Supervised Statistical Methods to Identify Credit Acceptance Rate | spa |
dc.type | info:eu-repo/semantics/publishedVersion | spa |
dc.type.local | Artículo | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Supervised Statistical Methods to Identify Credit Acceptance Rate .pdf
- Tamaño:
- 504.18 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Main article
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: