Supervised Statistical Methods to Identify Credit Acceptance Rate

dc.citation.epage27spa
dc.citation.issue01spa
dc.citation.journalTitleCuadernos de Ingeniería Matemáticaspa
dc.citation.spage1spa
dc.citation.volume01spa
dc.contributor.affiliationUniversidad Eafit, School of Sciences, Department of Mathematical Sciencesspa
dc.contributor.authorYusty, Valentina
dc.contributor.authorLaniado, Henry
dc.coverage.spatialMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.date.accessioned2021-06-10T20:46:01Z
dc.date.available2021-06-10T20:46:01Z
dc.date.issued2021-04-10
dc.description.abstractSince incorrect decisions can have detrimental effects on financial institutions, the possibility for these to forecast business failures becomes indispensable. In the financial domain, the focus of research problems rarely revolves around the identification of the clients who desist their credit offering, but rather on bankruptcy prediction and credit scoring. The general objective of this paper revolves around the implementation of supervised machine learning algorithms that will allow CrediOrbe, a credit company, to target customers whose profile assimilates those who desist their credit offering. Machine learning algorithms have been greatly studied as tools to aid decisions makers in the realm of finance. Performance measurements are calculated and analyzed through the use of statistical classification measurements. Suggestions for further research are providedspa
dc.formatapplication/pdfeng
dc.identifier.urihttp://hdl.handle.net/10784/29850
dc.language.isoengspa
dc.publisherUniversidad Eafitspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.localAcceso abiertospa
dc.subject.keywordMachine learning, credit scoring , financial institutions, statistical classification measurementsspa
dc.subject.keywordCredit scoringen
dc.subject.keywordFinancial institutionsen
dc.subject.keywordStatistical classification measurementsen
dc.titleSupervised Statistical Methods to Identify Credit Acceptance Ratespa
dc.typeinfo:eu-repo/semantics/publishedVersionspa
dc.type.localArtículospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Supervised Statistical Methods to Identify Credit Acceptance Rate .pdf
Tamaño:
504.18 KB
Formato:
Adobe Portable Document Format
Descripción:
Main article
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.5 KB
Formato:
Item-specific license agreed upon to submission
Descripción: