Two-dimensional meshless solution of the non-linear convection diffusion reaction equation by the Local Hermitian Interpolation method
Fecha
2013-03-22
Autores
Bustamante Chaverra, Carlos A
Power, Henry
Florez Escobar, Whady
Hill Betancourt, Alan F
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad EAFIT
Resumen
Descripción
A meshless numerical scheme is developed for solving a generic version of the non-linear convection-diffusion-reaction equation in two-dimensional domains. The Local Hermitian Interpolation (LHI) method is employed for the spatial discretization and several strategies are implemented for the solution of the resulting non-linear equation system, among them the Picard iteration, the Newton Raphson method and a truncated version of the Homotopy Analysis Method (HAM). The LHI method is a local collocation strategy in which Radial Basis Functions (RBFs) are employed to build the interpolation function. Unlike the original Kansa’s Method, the LHI is applied locally and the boundary and governing equation differential operators are used to obtain the interpolation function, giving a symmetric and non-singular collocation matrix. Analytical and Numerical Jacobian matrices are tested for the Newton-Raphson method and the derivatives of the governing equation with respect to the homotopy parameter are obtained analytically. The numerical scheme is verified by comparing the obtained results to the one-dimensional Burgers’ and two-dimensional Richards’ analytical solutions. The same results are obtained for all the non-linear solvers tested, but better convergence rates are attained with the Newton Raphson method in a double iteration scheme.
Se desarrolla un esquema numérico sin malla para resolver una versión genérica de la ecuación no lineal de convección-difusión-reacción en dominios bidimensionales. El método de Interpolación Hermitiana Local (LHI) se emplea para la discretización espacial y se implementan varias estrategias para la solución del sistema de ecuaciones no lineal resultante, entre ellas la iteración Picard, el método Newton Raphson y una versión truncada del Método de Análisis de Homotopía. (JAMÓN). El método LHI es una estrategia de colocación local en la que se utilizan funciones de base radial (RBF) para construir la función de interpolación. A diferencia del método original de Kansa, el LHI se aplica localmente y los operadores diferenciales de ecuación límite y gobernante se utilizan para obtener la función de interpolación, dando una matriz de colocación simétrica y no singular. Las matrices analíticas y numéricas jacobianas se prueban para el método de Newton-Raphson y las derivadas de la ecuación de gobierno con respecto al parámetro de homotopía se obtienen analíticamente. El esquema numérico se verifica comparando los resultados obtenidos con las soluciones analíticas unidimensionales de Burgers y Richards bidimensionales. Se obtienen los mismos resultados para todos los solucionadores no lineales probados, pero se obtienen mejores tasas de convergencia con el método Newton Raphson en un esquema de doble iteración.
Se desarrolla un esquema numérico sin malla para resolver una versión genérica de la ecuación no lineal de convección-difusión-reacción en dominios bidimensionales. El método de Interpolación Hermitiana Local (LHI) se emplea para la discretización espacial y se implementan varias estrategias para la solución del sistema de ecuaciones no lineal resultante, entre ellas la iteración Picard, el método Newton Raphson y una versión truncada del Método de Análisis de Homotopía. (JAMÓN). El método LHI es una estrategia de colocación local en la que se utilizan funciones de base radial (RBF) para construir la función de interpolación. A diferencia del método original de Kansa, el LHI se aplica localmente y los operadores diferenciales de ecuación límite y gobernante se utilizan para obtener la función de interpolación, dando una matriz de colocación simétrica y no singular. Las matrices analíticas y numéricas jacobianas se prueban para el método de Newton-Raphson y las derivadas de la ecuación de gobierno con respecto al parámetro de homotopía se obtienen analíticamente. El esquema numérico se verifica comparando los resultados obtenidos con las soluciones analíticas unidimensionales de Burgers y Richards bidimensionales. Se obtienen los mismos resultados para todos los solucionadores no lineales probados, pero se obtienen mejores tasas de convergencia con el método Newton Raphson en un esquema de doble iteración.