Hybrid aminopolymer-silica materials for efficient CO2 adsorption

dc.citation.journalTitleRSC ADVANCESeng
dc.contributor.authorLópez-Aranguren, P.
dc.contributor.authorBuiles S.
dc.contributor.authorFraile, J.
dc.contributor.authorLópez-Periago, A.
dc.contributor.authorVega, L.F.
dc.contributor.authorDomingo, C.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería de Procesosspa
dc.contributor.researchgroupDesarrollo y Diseño de Procesosspa
dc.date.accessioned2021-04-12T19:06:19Z
dc.date.available2021-04-12T19:06:19Z
dc.date.issued2015-01-01
dc.description.abstractThe present work focuses on the development of a new eco-efficient chemical method for the polymerization of aziridine to hyperbranched polyethyleneimine (PEI) into mesoporous silica by using compressed CO2 as a solvent, reaction medium and catalyst. PEI was in situ grafted into MCM-41 and silica gel substrates, with pore diameters of 3.8 and 9.0 nm, respectively. The optimal polymerization conditions were found by varying the reaction pressure (1.0-10 MPa), temperature (25-45°C) and time (20-400 min). The thermal stability analysis indicated that aminopolymer chains were covalently attached on the amorphous silica surface. The described compressed CO2 route for the synthesis of high amine content hybrid products (6-8 mmolN g-1) is a very fast method, with processing times in the order of few minutes even at very low working pressures (1.0 MPa), being a step forward in the design of efficient hybrid aminopolymer nanocomposites for CO2 capture. The adsorptive behavior of the prepared hybrid materials was experimentally established by recording the N2 (-196°C) and CO2 (25, 50 and 75°C) adsorption isotherms. Results were compared to molecular simulation studies performed using Grand Canonical Monte Carlo for either N2 or CO2 adsorbed on amino modified MCM-41, thus helping to elucidate the predominant PEI configuration present in the functionalized materials. © The Royal Society of Chemistry 2015.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=1688
dc.identifier.doi10.1039/c5ra20583b
dc.identifier.issn20462069
dc.identifier.otherWOS;000366865900040
dc.identifier.otherSCOPUS;2-s2.0-84951195430
dc.identifier.urihttp://hdl.handle.net/10784/28239
dc.language.isoeng
dc.publisherROYAL SOC CHEMISTRY
dc.relationDOI;10.1039/c5ra20583b
dc.relationWOS;000366865900040
dc.relationSCOPUS;2-s2.0-84951195430
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84951195430&doi=10.1039%2fc5ra20583b&partnerID=40&md5=4016d3a4c0071be25f4ab555bc6389af
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/2046-2069
dc.sourceRSC ADVANCES
dc.subjectCarbon dioxideeng
dc.subjectIonic liquidseng
dc.subjectMesoporous materialseng
dc.subjectMonte Carlo methodseng
dc.subjectPolymerizationeng
dc.subjectProduct designeng
dc.subjectSilicaeng
dc.subjectSilica geleng
dc.subjectFunctionalized materialseng
dc.subjectGrand canonical Monte carloeng
dc.subjectHyperbranched polyethyleneimineeng
dc.subjectMolecular simulationseng
dc.subjectPolymerization conditionseng
dc.subjectReaction pressureeng
dc.subjectStability analysiseng
dc.subjectWorking pressureseng
dc.subjectHybrid materialseng
dc.titleHybrid aminopolymer-silica materials for efficient CO2 adsorptioneng
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Colecciones