Dislocation density based flow stress model applied to the PFEM simulation of orthogonal cutting processes of Ti-6Al-4V

dc.citation.journalTitleMaterials
dc.contributor.authorRodríguez, J.M.
dc.contributor.authorLarsson, S.
dc.contributor.authorCarbonell, J.M.
dc.contributor.authorJonsén, P.
dc.contributor.departmentUniversidad EAFIT. Departamento de Ingeniería Mecánicaspa
dc.contributor.researchgroupMecatrónica y Diseño de Máquinasspa
dc.creatorRodríguez, J.M.
dc.creatorLarsson, S.
dc.creatorCarbonell, J.M.
dc.creatorJonsén, P.
dc.date.accessioned2021-04-16T20:20:48Z
dc.date.available2021-04-16T20:20:48Z
dc.date.issued2020-01-01
dc.description.abstractMachining of metals is an essential operation in the manufacturing industry. Chip formation in metal cutting is associated with large plastic strains, large deformations, high strain rates and high temperatures, mainly located in the primary and in the secondary shear zones. During the last decades, there has been significant progress in numerical methods and constitutive modeling for machining operations. In this work, the Particle Finite Element Method (PFEM) together with a dislocation density (DD) constitutive model are introduced to simulate the machining of Ti-6Al-4V. The work includes a study of two constitutive models for the titanium material, the physically based plasticity DD model and the phenomenology based Johnson-Cook model. Both constitutive models were implemented into an in-house PFEM software and setup to simulate deformation behaviour of titanium Ti6Al4V during an orthogonal cutting process. Validation show that numerical and experimental results are in agreement for different cutting speeds and feeds. The dislocation density model, although it needs more thorough calibration, shows an excellent match with the results. This paper shows that the combination of PFEM together with a dislocation density constitutive model is an excellent candidate for future numerical simulations of mechanical cutting. © 2020 by the authors.eng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=11942
dc.identifier.doi10.3390/MA13081979
dc.identifier.issn19961944
dc.identifier.otherWOS;000531829000183
dc.identifier.otherPUBMED;32344739
dc.identifier.otherSCOPUS;2-s2.0-85084836028
dc.identifier.urihttp://hdl.handle.net/10784/29314
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084836028&doi=10.3390%2fMA13081979&partnerID=40&md5=395aa4206057c7961b7a3197edc72e14
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/1996-1944
dc.sourceMaterials
dc.subjectAluminum alloyseng
dc.subjectConstitutive modelseng
dc.subjectCutting toolseng
dc.subjectDeformationeng
dc.subjectIndustrial wasteseng
dc.subjectNumerical methodseng
dc.subjectStrain rateeng
dc.subjectTernary alloyseng
dc.subjectTitaniumeng
dc.subjectTitanium alloyseng
dc.subjectVanadium alloys, Deformation behavioureng
dc.subjectDislocation densitieseng
dc.subjectDislocation density modeleng
dc.subjectMachining operationseng
dc.subjectManufacturing industrieseng
dc.subjectMechanical cuttingeng
dc.subjectOrthogonal cuttingeng
dc.subjectParticle-finite element method, Metal cuttingeng
dc.titleDislocation density based flow stress model applied to the PFEM simulation of orthogonal cutting processes of Ti-6Al-4Veng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
materials-13-01979.pdf
Tamaño:
1.32 MB
Formato:
Adobe Portable Document Format
Descripción:

Colecciones