On The Critical Point Structure of Eigenfunctions Belonging to the First Nonzero Eigenvalue of a Genus Two Closed Hyperbolic Surface

dc.citation.journalTitleScience Journal of Physics
dc.contributor.authorCarlos A. Cadavid
dc.contributor.authorOsorno, María C.
dc.contributor.authorRuiz OE
dc.contributor.departmentUniversidad EAFIT. Departamento de Cienciasspa
dc.contributor.researchgroupMatemáticas y Aplicacionesspa
dc.creatorCarlos A. Cadavid
dc.creatorOsorno, María C.
dc.creatorRuiz OE
dc.date.accessioned2021-04-12T14:04:19Z
dc.date.available2021-04-12T14:04:19Z
dc.date.issued2012-05-01
dc.description.abstractWe develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold. The method is applied to a closed hyperbolic surface of genus twoeng
dc.identifierhttps://eafit.fundanetsuite.com/Publicaciones/ProdCientif/PublicacionFrw.aspx?id=4914
dc.identifier.doi10.7237/sjp/128
dc.identifier.issn22766367
dc.identifier.urihttp://hdl.handle.net/10784/27696
dc.language.isoengeng
dc.publisherScience Journal Publication
dc.rightsScience Journal Publication
dc.sourceScience Journal of Physics
dc.subjectClosed hyperbolic surfaceeng
dc.subjectLaplacianeng
dc.subjectEigenvalueeng
dc.subjectEigenfunctioneng
dc.subjectCritical pointeng
dc.subjectSpectral graph theoryeng
dc.titleOn The Critical Point Structure of Eigenfunctions Belonging to the First Nonzero Eigenvalue of a Genus Two Closed Hyperbolic Surfaceeng
dc.typearticleeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersioneng
dc.typepublishedVersioneng
dc.type.localArtículospa

Archivos

Colecciones