Show simple item record

dc.creatorLoaiza Ossa, Gabriel Ignacio
dc.creatorQuiceno Echavarría, Héctor Román
dc.date.available2015-10-02T21:53:07Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/10784/7411
dc.descriptionFor the family of non-parametric q-exponential statistical models, in a former paper, written by the same authors, a differentiable Banach manifold modelled on Lebesgue spaces of real random variables has been built. In this paper, the geometry induced on this manifold is characterized by q-divergence functionals. This geometry turns out to be a generalization of the geometry given by Fisher information metric and Levi-Civita connections. Moreover, the classical Amari’s α-connections appears as special case of the q −connections ∇ (q). The main result is the expected one, namely the zero curvature of the manifold. Loading... Geometric Science of InformationGeometric Science of Information Look Inside Chapter Metrics Downloads1K Provided by Bookmetrix Other actions Export citation About this Book Reprints and Permissions Add to Papers Share Share this content on Facebook Share this content on Twitter Share this content on LinkedInspa
dc.language.isoengspa
dc.publisherSpringer Berlin Heidelbergspa
dc.relation.ispartofGeometric Science of Information. First International Conference, GSI 2013, Paris, France, August 28-30, 2013. Proceedings, pp 737-742spa
dc.relation.ispartofseriesLecture Notes in Computer Sciencespa
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-40020-9_82spa
dc.rightsinfo:eu-repo/semantics/restrictedAccessspa
dc.subjectEspacios de Orliczspa
dc.titleA Riemannian Geometry in the q-Exponential Banach Manifold Induced by q-Divergencesspa
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.typeconferenceObjecteng
dc.rights.accessRightsopenAccessspa
dc.publisher.programGrupo de Investigación Análisis Funcional y Aplicacionesspa
dc.subject.lembESPACIOS DE BANACHspa
dc.subject.lembESPACIOS VECTORIALESspa
dc.subject.lembTEOREMA DE BANACHspa
dc.subject.lembGEOMETRÍA DIFERENCIALspa
dc.subject.lembESPACIOS MÉTRICOSspa
dc.subject.lembALGORITMOSspa
dc.subject.lembMATEMÁTICASspa
dc.subject.lembINTELIGENCIA ARTIFICIALspa
dc.subject.lembPROCESAMIENTO DE IMÁGENESspa
dc.publisher.departmentEscuela de Cienciasspa
dc.type.spaDocumento de conferenciaspa
dc.subject.keywordAlgorithmsspa
dc.subject.keywordBanach spacesspa
dc.subject.keywordGeometry, riemannianspa
dc.subject.keywordMetric spacesspa
dc.subject.keywordMathematicsspa
dc.subject.keywordArtificial intelligencespa
dc.subject.keywordImage processingspa
dc.rights.accesoLibre accesospa
dc.date.accessioned2015-10-02T21:53:07Z
dc.type.hasVersionpublishedVersionspa
dc.contributor.departmentUniversidad EAFIT. Escuela de Ciencias. Grupo de Investigación Análisis Funcional y Aplicaciones
dc.tipo.versionObra publicadaspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record