Show simple item record

dc.date.available2015-04-24T16:18:49Z
dc.date.issued2013-02
dc.identifier.citationG. Loaiza, H.R. Quiceno, A -exponential statistical Banach manifold, Journal of Mathematical Analysis and Applications, Volume 398, Issue 2, 15 February 2013, Pages 466-476, ISSN 0022-247X, http://dx.doi.org/10.1016/j.jmaa.2012.08.046. (http://www.sciencedirect.com/science/article/pii/S0022247X12006981)spa
dc.identifier.issn0022-247Xspa
dc.identifier.urihttp://hdl.handle.net/10784/5245
dc.description.abstractLetµbe a given probability measure andMµ the set ofµ-equivalent strictly positive probability densities -- In this paper we construct a Banach manifold on Mµ, modeled on the space L∞(p · µ) where p is a reference density, for the non-parametric q-exponential statistical models (Tsallis’s deformed exponential), where 0 < q < 1 is any real number -- This family is characterized by the fact that when q → 1, then the non-parametric exponential models are obtained and the manifold constructed by Pistone and Sempi is recovered, up to continuous embeddings on the modeling space -- The coordinate mappings of the manifold are given in terms of Csiszár’s Φ-divergences; the tangent vectors are identified with the one-dimensional q-exponential models and q-deformations of the score functionspa
dc.language.isoengeng
dc.publisherELSEVIERspa
dc.relation.ispartofJournal of Mathematical Analysis and Applications Volume 398, Issue 2, 15 February 2013, Pages 466–476spa
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jmaa.2012.08.046spa
dc.rightsCopyright © 2012 Elsevier Ltd. All rights reserved.spa
dc.subjectEspacios de Orliczspa
dc.titleA q-exponential statistical Banach manifoldspa
dc.typeinfo:eu-repo/semantics/article
dc.typearticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.publisher.programGrupo de Investigación Análisis Funcional y Aplicacionesspa
dc.subject.lembTEORÍA DE LA INFORMACIÓNspa
dc.subject.lembENTROPÍA (TEORÍA DE LA INFORMACIÓN)spa
dc.subject.lembESPACIOS DE BANACHspa
dc.subject.lembFÍSICA CUÁNTICAspa
dc.subject.lembANÁLISIS MATEMÁTICOspa
dc.subject.lembGEOMETRÍA DIFERENCIALspa
dc.subject.lembFUNCIONES ANALÍTICASspa
dc.publisher.departmentEscuela de Ciencias y Humanidadesspa
dc.type.localArtículospa
dc.subject.keywordInformation theoryspa
dc.subject.keywordEntropy (information theory)spa
dc.subject.keywordBanach spacesspa
dc.subject.keywordQuantum physicalspa
dc.subject.keywordMathematical analysisspa
dc.subject.keywordGeometry, differentialspa
dc.subject.keywordAnalytic functionsspa
dc.rights.localAcceso restringidospa
dc.date.accessioned2015-04-24T16:18:49Z
dc.type.hasVersionObra publicadaspa
dc.type.hasVersionpublishedVersionspa
dc.contributor.departmentdepartment:Universidad EAFIT. Escuela de Ciencias. Grupo de Investigación Análisis Funcional y Aplicaciones
dc.contributor.authorQuiceno Echavarría, Héctor Román
dc.contributor.authorLoaiza Ossa, Gabriel Ignacio


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record