• español
    • English
  • Autoarchivo
  • Listar
    • Comunidades & Colecciones
    • Fecha de publicación
    • Autores
    • Títulos
    • Materias
    • Tipo de documento
  • español 
    • español
    • English
  • Ayuda
  • Ingresar
 
Ver ítem 
  •   Repositorio Institucional Universidad EAFIT
  • Investigación
  • Escuela de Ciencias
  • Análisis Funcional y Aplicaciones
  • Documentos de trabajo (working papers)
  • Ver ítem
  •   Repositorio Institucional Universidad EAFIT
  • Investigación
  • Escuela de Ciencias
  • Análisis Funcional y Aplicaciones
  • Documentos de trabajo (working papers)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Duality in Multi-Objective Optimization Under Uncertainty

Thumbnail
Ver/
WolfeDuality (2).pdf (283.6Kb)
Fecha
2014-02-20
Autor
Puerta Yepes, María. E
Gaviria, C.
Fernandez, J.P.
Metadatos
Mostrar el registro completo del ítem
Resumen
In this paper we extend to a multi-objective optimization with a interval-valued function and real valued constraints, the concepts of Wolfes duality elaborated on [1] and [2], for the interval-valued mono-objective case with real constraints or intervals-valued. First of all, being supported on the Wolfes duality theory valued set [3], we perform an extension to optimize a deterministic multi-objective function, and with real valued constraints of a proposal made by Wolfe [4] for a duality in a optimization with objective function and real valued constraints. The theorems 3.1 and 3.3 are theorems of duality in a weak and strong sense, respectively; i.e, they guarantee that all objective value of a dual problem are lesser than all the objective value of the primal problem, and, under some conditions, the furthest values of the primal and dual problem are the same. Secondly, being supported on [3] and, in the Wolfes duality for a deterministic multi-objective case, we developed Wolfes duality concepts for an optimization under uncertainty with a interval-valued function criteria with real valued constraints. Lem-mas 4.3, 4.4 and proposition 4.5 constitute a duality in a weak sense, and theorems 4.8 and 4.11 constitute a duality in a strong sense.
URI
http://hdl.handle.net/10784/4556
Colecciones
  • Documentos de trabajo (working papers) [3]

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

universidad eafit medellin repositorio institucional

Vigilada Mineducación
Universidad con Acreditación Institucional hasta 2026
Resolución MEN 2158 de 2018

Líneas de Atención

Medellín: (57) (4) - 448 95 00
Resto del país: 01 8000 515 900
Conmutador: (57) (4) - 2619500
Carrera 49 N 7 Sur - 50
Medellín, Colombia, Suramérica

Derechos Reservados

DSpace software
copyright © 2002-2016 
Duraspace

Theme by 
@mire NV