• español
    • English
  • Autoarchivo
  • Listar
    • Comunidades & Colecciones
    • Fecha de publicación
    • Autores
    • Títulos
    • Materias
    • Tipo de documento
  • español 
    • español
    • English
  • Ayuda
  • Ingresar
 
Ver ítem 
  •   Repositorio Institucional Universidad EAFIT
  • Investigación
  • Escuela de Economía y Finanzas
  • Centro de Investigaciones Económicas y Financieras (CIEF)
  • Documentos de trabajo (working papers)
  • Ver ítem
  •   Repositorio Institucional Universidad EAFIT
  • Investigación
  • Escuela de Economía y Finanzas
  • Centro de Investigaciones Económicas y Financieras (CIEF)
  • Documentos de trabajo (working papers)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption

Thumbnail
Ver/
Documento de trabajo de investigación (1.499Mb)
Fecha
2014-07-23
Autor
Ramírez Hassan, Andrés
Cardona Jiménez, Jhonatan
Pericchi Guerra, Raul
Métricas
Metadatos
Mostrar el registro completo del ítem
Resumen
Resumen
In this paper we analyze the effect of four possible alternatives regarding the prior distributions in a linear model with autoregressive errors to predict piped water consumption: Normal-Gamma, Normal-Scaled Beta two, Studentized-Gamma and Student's t-Scaled Beta two. We show the effects of these prior distributions on the posterior distributions under different assumptions associated with the coefficient of variation of prior hyperparameters in a context where there is a conflict between the sample information and the elicited hyperparameters. We show that the posterior parameters are less affected by the prior hyperparameters when the Studentized-Gamma and Student's t-Scaled Beta two models are used. We show that the Normal-Gamma model obtains sensible outcomes in predictions when there is a small sample size. However, this property is lost when the experts overestimate the certainty of their knowledge. In the case that the experts greatly trust their beliefs, it is a good idea to use Student's t distribution as the prior distribution, because we obtain small posterior predictive errors. In addition, we find that the posterior predictive distributions using one of the versions of Student's t as prior are robust to the coefficient of variation of the prior parameters. Finally, it is shown that the Normal-Gamma model has a posterior distribution of the variance concentrated near zero when there is a high level of confidence in the experts' knowledge: this implies a narrow posterior predictive credibility interval, especially using small sample sizes.
Documentos PDF

loading
 
URI
http://hdl.handle.net/10784/2857
Colecciones
  • Documentos de trabajo (working papers) [381]

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

universidad eafit medellin repositorio institucional

Vigilada Mineducación
Universidad con Acreditación Institucional hasta 2026
Resolución MEN 2158 de 2018

Líneas de Atención

Medellín: (57) (604) - 448 95 00
Resto del país: 01 8000 515 900
Conmutador: (57) (604) - 2619500
Carrera 49 N 7 Sur - 50
Medellín, Colombia, Suramérica

Derechos Reservados

DSpace software
copyright © 2002-2016 
Duraspace

Theme by 
@mire NV