• español
    • English
  • Autoarchivo
  • Listar
    • Comunidades & Colecciones
    • Fecha de publicación
    • Autores
    • Títulos
    • Materias
    • Tipo de documento
  • español 
    • español
    • English
  • Ayuda
  • Ingresar
 
Ver ítem 
  •   Repositorio Institucional Universidad EAFIT
  • Trabajo de Grado
  • Escuela de Ingeniería
  • Ingeniería de Procesos (trabajo de grado)
  • Ver ítem
  •   Repositorio Institucional Universidad EAFIT
  • Trabajo de Grado
  • Escuela de Ingeniería
  • Ingeniería de Procesos (trabajo de grado)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of PBM and ANPM models for predicting grinding product size distributions

Thumbnail
Ver/
Trabajo de grado (759.6Kb)
Constancia aprobación trabajo de grado (497.7Kb)
Formulario de autorización de publicación de obras (957.2Kb)
Fecha
2020
Autor
Luján González, Juan Camilo
Restrepo Lopera, Juan Pablo
Métricas
Metadatos
Mostrar el registro completo del ítem
Resumen
Resumen
Grinding is a very important industrial operation that draws up to 4% of the global electricity consumption. It is imperative to predict accurately the appropriate retention times necessary for a given size reduction to minimize the wasted energy invested in overgrinding. However, the most common models for scaling, such as Bond, could lead to a design risk on the order of ± 20% due to their assumption that a single particle size can describe the entire particle size distribution. Thus, different approaches (both phenomenological and non- phenomenological) need to be explored. In the present work, a population balance model is compared with an algebraic statistical model, to predict the evolution of particle size distribution over time, assessing them in terms of accuracy, robustness, and computational complexity. Even though the population balance model had a lower accuracy and higher mathematical complexity its predictions were physically coherent, which made it a more robust model for extrapolating to different initial conditions and milling times. It is important to note that due to the 2020 COVID-19 pandemic, experimental information was limited, which inhibited an independent validation of the models, and an overfitting analysis for the ANPM.
Documentos PDF

loading
 
URI
http://hdl.handle.net/10784/17079
Colecciones
  • Ingeniería de Procesos (trabajo de grado) [186]

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

universidad eafit medellin repositorio institucional

Vigilada Mineducación
Universidad con Acreditación Institucional hasta 2026
Resolución MEN 2158 de 2018

Líneas de Atención

Medellín: (57) (604) - 448 95 00
Resto del país: 01 8000 515 900
Conmutador: (57) (604) - 2619500
Carrera 49 N 7 Sur - 50
Medellín, Colombia, Suramérica

Derechos Reservados

DSpace software
copyright © 2002-2016 
Duraspace

Theme by 
@mire NV