Examinando por Materia "time factor"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Time dependent deformation behavior of dentin(PERGAMON-ELSEVIER SCIENCE LTD, 2017-04-01) Montoya C; Arola D; Ossa EA; Montoya C; Arola D; Ossa EA; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaObjective The viscoelastic behavior of dentin and its ability to undergo time dependent deformation are considered to be important to oral functions and its capacity to resist fracture. There are spatial variations in the microstructure of dentin within the crown, which could be important to the viscous behavior. However, a spatially resolved description for the viscoelastic behavior of coronal dentin has not been reported. Methods In this investigation spherical indentations were made in three regions of coronal dentin including the outer, middle and inner regions. Power law relations were developed to quantitatively describe the stress-strain responses of the tissue. Results Results showed that the deformation behavior was strongly dependent on the composition (mineral to collagen ratio) and microstructure (tubule density), which contributed to an increase in the rate of viscous deformation with increasing proximity to the pulp. Conclusions A model accounting for spatial variations in composition and microstructure was developed to describe the steady-state time dependent deformation behavior of coronal dentin, and a good agreement was found with the experimental results. © 2017 Elsevier LtdÍtem A unified model framework for the multiattribute consistent periodic vehicle routing problem(Public Library of Science, 2020-01-01) Baldoquin M.G.; Martine J.A.; Diaz-Ramirez J.; Baldoquin M.G.; Martine J.A.; Diaz-Ramirez J.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesModeling real-life transportation problems usually require the simultaneous incorporation of different variants of the classical vehicle routing problem (VRP). The periodic VRP (PVRP) is a classical extension in which routes are determined for a planning period of several days and each customer has an associated set of allowable visit schedules. This work proposes a unified model framework for PVRP that consists of multiple attributes or variants not previously addressed simultaneously, such as time-windows, time-dependence, and consistency-which guarantees the visits to customer by the same vehicle-, together with three objective functions that respond to the needs of practical problems. The numerical experimentation is focused on the effects of three factors: frequency, depot centrality, and the objective function on the performance of a general-purpose MILP solver, through the analysis of the achieved relative gaps. Results show higher sensitivity to the objective functions and to the problem sizes. © 2020 Baldoquin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.