Examinando por Materia "seismic data"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Evaluation of the seismic risk of the unreinforced masonry building stock in Antioquia, Colombia(SPRINGER, 2017-03-01) Acevedo, A.B.; Jaramillo, J.D.; Yepes, C.; Silva, V.; Osorio, F.A.; Villar, M.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)This paper presents the development of an exposure model for the residential building stock in Antioquia (the second most populated Department of Colombia), the development of fragility functions for unreinforced masonry buildings, and estimation of building damage for two possible seismic events. Both the exposure and fragility models are publically available and can be used to calculate damage and losses due to single events, or probabilistic seismic hazard. The exposure model includes information regarding the total built-up area, number of buildings and inhabitants, building class, and replacement cost. The methodology used for the creation of the exposure model was based on available cadastral information, survey data, and expert judgment. Fragility functions were derived using nonlinear time history analyses on single-degree-of-freedom oscillators, for unreinforced masonry structures which represent more than 60% of the building stock in the region. Both seismic scenarios indicate that an event corresponding to a return period of 500 years located within the region of interest would cause slight or moderate damage to nearly 95 thousand structures, and about 32 thousand would have severe damage or collapse. This study was developed as part of the South America Risk Assessment project, supported by the Global Earthquake Model and SwissRe Foundation. © 2016, Springer Science+Business Media Dordrecht.Ítem Evaluation of the seismic risk of the unreinforced masonry building stock in Antioquia, Colombia(SPRINGER, 2017-03-01) Acevedo, A.B.; Jaramillo, J.D.; Yepes, C.; Silva, V.; Osorio, F.A.; Villar, M.; Mecánica AplicadaThis paper presents the development of an exposure model for the residential building stock in Antioquia (the second most populated Department of Colombia), the development of fragility functions for unreinforced masonry buildings, and estimation of building damage for two possible seismic events. Both the exposure and fragility models are publically available and can be used to calculate damage and losses due to single events, or probabilistic seismic hazard. The exposure model includes information regarding the total built-up area, number of buildings and inhabitants, building class, and replacement cost. The methodology used for the creation of the exposure model was based on available cadastral information, survey data, and expert judgment. Fragility functions were derived using nonlinear time history analyses on single-degree-of-freedom oscillators, for unreinforced masonry structures which represent more than 60% of the building stock in the region. Both seismic scenarios indicate that an event corresponding to a return period of 500 years located within the region of interest would cause slight or moderate damage to nearly 95 thousand structures, and about 32 thousand would have severe damage or collapse. This study was developed as part of the South America Risk Assessment project, supported by the Global Earthquake Model and SwissRe Foundation. © 2016, Springer Science+Business Media Dordrecht.Ítem Evaluation of the seismic risk of the unreinforced masonry building stock in Antioquia, Colombia(SPRINGER, 2017-03-01) Acevedo, A.B.; Jaramillo, J.D.; Yepes, C.; Silva, V.; Osorio, F.A.; Villar, M.; Acevedo, A.B.; Jaramillo, J.D.; Yepes, C.; Silva, V.; Osorio, F.A.; Villar, M.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThis paper presents the development of an exposure model for the residential building stock in Antioquia (the second most populated Department of Colombia), the development of fragility functions for unreinforced masonry buildings, and estimation of building damage for two possible seismic events. Both the exposure and fragility models are publically available and can be used to calculate damage and losses due to single events, or probabilistic seismic hazard. The exposure model includes information regarding the total built-up area, number of buildings and inhabitants, building class, and replacement cost. The methodology used for the creation of the exposure model was based on available cadastral information, survey data, and expert judgment. Fragility functions were derived using nonlinear time history analyses on single-degree-of-freedom oscillators, for unreinforced masonry structures which represent more than 60% of the building stock in the region. Both seismic scenarios indicate that an event corresponding to a return period of 500 years located within the region of interest would cause slight or moderate damage to nearly 95 thousand structures, and about 32 thousand would have severe damage or collapse. This study was developed as part of the South America Risk Assessment project, supported by the Global Earthquake Model and SwissRe Foundation. © 2016, Springer Science+Business Media Dordrecht.Ítem Regional controls in the distribution and morphometry of deep-water gravitational deposits along a convergent tectonic margin. Southern Caribbean of Colombia(Elsevier BV, 2020-08-06) Naranjo Vesga, Julián Francisco; Ortiz Karpf, Andrea; Wood, Lesli; Jobe, Z.; Paniagua, J.; Shumaker, L.; Mateus Tarazona, Darwin; Universidad EAFIT. Departamento de Geología; Ciencias del MarDeep-water fold and thrust belts often develop in convergent tectonic margins, creating irregular slope profiles that control the distribution of deep-water gravity deposits. However, in areas with high sediment supply, the erosion and sedimentation can minimize structural relief and smooth the slope. Using multibeam bathymetry with 3D seismic data, we analyze the distribution of deep-water gravity-driven deposits along the convergent margin of the southern Caribbean of Colombia, comparing areas with different continental sediment supply, slope profile, and shelf width. We identify three geomorphological zones: The Northern, Central and Southern Zones. The Northern Zone is characterized by a gentle slope topography, high sediment supply, and large (>100 km length) channel-levee systems traversing the slope and basin floor. In this zone, shelf-attached mass-transport deposits erode and smooth sea-floor topography. The Central Zone is characterized by low sediment supply and steep and irregular slope topography. Here, short-runout mass-transport deposits sourced from the crests and steep flanks of emergent anticlines are common. The irregular relief created by tectonic deformation forms barriers for sediment transport, leading to tortuous sediment-flow pathways. Submarine canyons incise the thrust-cored anticlines, transporting sediment through interconnected, adjacent piggyback sub-basins. Finally, the Southern Zone is characterized by steep slope and moderate sediment supply. Here, tectonic deformation has been smoothed by numerous shelf-attached mass-transport deposits. The erosional scours carved by mass flows merge downslope and evolve into submarine canyons that can deliver mass-transport deposits more than 80 km into the basin. We analyze the impact of slope profile, sediment input and shelf width on the distribution and morphology of deep-water deposits along the southern Colombian Caribbean margin, and present a predictive model for the depositional patterns more likely to develop in other continental margins affected by deep-water fold and thrust belts. © 2020 Elsevier Ltd