Examinando por Materia "mineralization"
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem The Box-Benkhen experimental design for the optimization of the electrocatalytic treatment of wastewaters with high concentrations of phenol and organic matter.(IWA PUBLISHING, 2009-01-01) GilPavas, Edison; Betancourt, Alejandra; Angulo, Monica; Dobrosz-Gomez, Izabela; Angel Gomez-Garcia, Miguel; GilPavas, Edison; Betancourt, Alejandra; Angulo, Monica; Dobrosz-Gomez, Izabela; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)In this work, the Box-Benkhen experimental Design (BBD) was applied for the optimization of the parameters of the electrocatalytic degradation of wastewaters resulting from a phenolic resins industry placed in the suburbs of Medellin (Colombia). The direct and the oxidant assisted electro-oxidation experiments were carried out in a laboratory scale batch cell reactor, with monopolar configuration, and electrodes made of graphite (anode) and titanium (cathode). A multifactorial experimental design was proposed, including the following experimental variables: initial phenol concentration, conductivity, and pH. The direct electro-oxidation process allowed to reach ca. 88% of phenol degradation, 38% of mineralization (TOC), 52% of Chemical Oxygen Demand (COD) degradation, and an increase in water biodegradability of 13%. The synergetic effect of the electro-oxidation process and the respective oxidant agent (Fenton reactant, potassium permanganate, or sodium persulfate) let to a significant increase in the rate of the degradation process. At the optimized variables values, it was possible to reach ca. 99% of phenol degradation, 80% of TOC and 88% of COD degradation. A kinetic study was accomplished, which included the identification of the intermediate compounds generated during the oxidation process.Ítem Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the Response Surface Methodology as the optimization tool.(IWA PUBLISHING, 2012-01-01) GilPavas, Edison; Dobrosz-Gomez, Izabela; Angel Gomez-Garcia, Miguel; GilPavas, Edison; Dobrosz-Gomez, Izabela; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)The Response Surface Methodology (RSM) was applied as a tool for the optimization of the operational conditions of the photo-degradation of highly concentrated PY12 wastewater, resulting from a textile industry located in the suburbs of Medellin (Colombia). The Box-Behnken experimental Design (BBD) was chosen for the purpose of response optimization. The photo-Fenton process was carried out in a laboratory-scale batch photo-reactor. A multifactorial experimental design was proposed, including the following variables: the initial dyestuff concentration, the H(2)O(2) and the Fe(+2) concentrations, as well as the UV wavelength radiation. The photo-Fenton process performed at the optimized conditions resulted in ca. 100% of dyestuff decolorization, 92% of COD and 82% of TOC degradation. A kinetic study was accomplished, including the identification of some intermediate compounds generated during the oxidation process. The water biodegradability reached a final DBO(5)/DQO = 0.86 value.Ítem Multifactorial optimization of the decolorisation parameters of wastewaters resulting from dyeing flowers.(IWA PUBLISHING, 2009-01-01) Gil Pavas, Edison; Angel Gomez-Garcia, Miguel; Gil Pavas, Edison; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)This work deals with the treatment of the wastewaters resulting from the process of dyeing flowers. In some local cases for growing flowers near to Medellin (Colombia), wastewater color was found to be one of the main problems in meeting local effluent standards. Wastewaters were treated by photodegradation process (which includes photocatalysis) to achieve the degradation of dyes mixture and organic matter in the wastewater. A multifactorial experimental design was proposed, including as experimental factors the following variables: pH, and the concentration of both catalyst (TiO(2)) and hydrogen peroxide (H(2)O(2)). According to the obtained results, at the optimized variables values, it is possible to reach a 99% reduction of dyes, a 76.9% of mineralization (TOC) and a final biodegradability of 0.834. Kinetic analysis allows proposing a pseudo first order reaction for the reduction, the mineralization, and the biodegradation processes.Ítem Treatment of automotive industry oily wastewater by electrocoagulation: statistical optimization of the operational parameters.(IWA PUBLISHING, 2009-11-01) GilPavas, Edison; Molina-Tirado, Kevin; Angel Gomez-Garcia, Miguel; GilPavas, Edison; Molina-Tirado, Kevin; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)An electrocoagulation process was used for the treatment of oily wastewater generated from an automotive industry in Medellin (Colombia). An electrochemical cell consisting of four parallel electrodes (Fe and Al) in bipolar configuration was implemented. A multifactorial experimental design was used for evaluating the influence of several parameters including: type and arrangement of electrodes, pH, and current density. Oil and grease removal was defined as the response variable for the statistical analysis. Additionally, the BOD(5), COD, and TOC were monitored during the treatment process. According to the results, at the optimum parameter values (current density = 4.3 mA/cm(2), distance between electrodes = 1.5 cm, Fe as anode, and pH = 12) it was possible to reach a c.a. 95% oils removal, COD and mineralization of 87.4% and 70.6%, respectively. A final biodegradability (BOD(5)/COD) of 0.54 was reached.Ítem Zylerberg, 1985 Contributions of the layer topology and mineral content to the elastic modulus and strength of fish scales(ELSEVIER SCIENCE BV, 2018-02-01) Murcia, S.; Miyamoto, Y.; Varma, M.P.; Ossa, A.; Arola, D.Fish scales are an interesting natural structural material and their functionality requires both flexibility and toughness. Our previous studies identified that there are spatial variations in the elastic properties of fish scales corresponding to the anatomical regions, and that they appear to be attributed to changes in the microstructure. In the present study, a model is proposed that describes the elastic behavior of elasmoid fish scales in terms of the relative contributions of the limiting layer and both the internal and external elasmodine. The mechanical properties of scales from the Megalops atlanticus (i.e. tarpon) were characterized in tension and compared with predictions from the model. The average error between the predicted and the experimental properties was 7%. It was found that the gradient in mineral content and aspect ratio of the apatite crystals in the limiting layer played the most important roles on the elastic modulus of the scales. Furthermore, misalignment of plies in the external elasmodine from the longitudinal direction was shown to reduce the elastic modulus significantly. This is one approach for modulating the fish scale flexibility for a high mineral content that is required to increase the resistance to puncture. © 2017