Examinando por Materia "hazard assessment"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Development of structural debris flow fragility curves (debris flow buildings resistance) using momentum flux rate as a hazard parameter(Elsevier B.V., 2018-05-18) Prieto, Jorge Alonso; Journeay, Murray; Acevedo A.B.; Arbelaez, Juan; Ulmi, Malaika; Prieto, Jorge Alonso; Journeay, Murray; Acevedo A.B.; Arbelaez, Juan; Ulmi, Malaika; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaSocietal risks associated with debris flow hazards are significant and likely to escalate due to global population growth trends and the compounding effects of climate change. Quantitative risk assessment methods (QRA) provide a means of anticipating the likely impacts and consequences of settlement in areas susceptible to landslide activity and are increasingly being used to inform land use decisions that seek to increase disaster resilience through mitigation and/or adaptation. Current QRA methods for debris flow hazards are based primarily on empirical vulnerability functions that relate hazard intensity (depth, velocity, etc.) to expected levels of loss for a given asset of concern, i.e. most of current methods are dedicated to loss-intensity relations. Though grounded in observed cause-effect relationships, empirical vulnerability functions are not designed to predict the capacity of a building to withstand the physical impacts of a debris flow event, or the related uncertainties associated with modelling building performance as a function of variable debris flow parameters. This paper describes a methodology for developing functions that relate hazard intensity to probability of structural damage, i.e., fragility functions, rather than vulnerability functions, based on the combined hydrodynamic forces of a debris flow event (hazard level) and the inherent structural resistance of building typologies that are common in rural mountainous settings (building performance). Hazard level includes a hydrodynamic force variable (FDF), which accounts for the combined effects of debris flow depth and velocity, i.e. momentum flux (hv2), material density (?) and related flow characteristics including drag (Cd) and impact coefficient (Kd). Building performance is measured in terms of yield strength (Ay), ultimate lateral capacity (AU) and weight to breadth ratios (W/B) defined for a portfolio building types that are common in mountain settlements. Collectively, these model parameters are combined using probabilistic methods to produce building-specific fragility functions that describe the probability of reaching or exceeding successive thresholds of structural damage over a range of hazard intensity values, expressed in terms of momentum flux. Validation of the proposed fragility model is based on a comparison between model outputs and observed cause-effect relationships for recent debris flow events in South Korea and in Colombia. Debris flow impact momentum fluxes, capable of resulting in complete damage to unreinforced masonry buildings (URM) in those regions are estimated to be on the order of 24 m3/s2, consistent with field-based observations. Results of our study offer additional capabilities for assessing risks associated with urban growth and development in areas exposed to debris flow hazards. © 2018 Elsevier B.V.Ítem Development of structural debris flow fragility curves (debris flow buildings resistance) using momentum flux rate as a hazard parameter(Elsevier B.V., 2018-05-18) Prieto, Jorge Alonso; Journeay, Murray; Acevedo A.B.; Arbelaez, Juan; Ulmi, Malaika; Mecánica AplicadaSocietal risks associated with debris flow hazards are significant and likely to escalate due to global population growth trends and the compounding effects of climate change. Quantitative risk assessment methods (QRA) provide a means of anticipating the likely impacts and consequences of settlement in areas susceptible to landslide activity and are increasingly being used to inform land use decisions that seek to increase disaster resilience through mitigation and/or adaptation. Current QRA methods for debris flow hazards are based primarily on empirical vulnerability functions that relate hazard intensity (depth, velocity, etc.) to expected levels of loss for a given asset of concern, i.e. most of current methods are dedicated to loss-intensity relations. Though grounded in observed cause-effect relationships, empirical vulnerability functions are not designed to predict the capacity of a building to withstand the physical impacts of a debris flow event, or the related uncertainties associated with modelling building performance as a function of variable debris flow parameters. This paper describes a methodology for developing functions that relate hazard intensity to probability of structural damage, i.e., fragility functions, rather than vulnerability functions, based on the combined hydrodynamic forces of a debris flow event (hazard level) and the inherent structural resistance of building typologies that are common in rural mountainous settings (building performance). Hazard level includes a hydrodynamic force variable (FDF), which accounts for the combined effects of debris flow depth and velocity, i.e. momentum flux (hv2), material density (?) and related flow characteristics including drag (Cd) and impact coefficient (Kd). Building performance is measured in terms of yield strength (Ay), ultimate lateral capacity (AU) and weight to breadth ratios (W/B) defined for a portfolio building types that are common in mountain settlements. Collectively, these model parameters are combined using probabilistic methods to produce building-specific fragility functions that describe the probability of reaching or exceeding successive thresholds of structural damage over a range of hazard intensity values, expressed in terms of momentum flux. Validation of the proposed fragility model is based on a comparison between model outputs and observed cause-effect relationships for recent debris flow events in South Korea and in Colombia. Debris flow impact momentum fluxes, capable of resulting in complete damage to unreinforced masonry buildings (URM) in those regions are estimated to be on the order of 24 m3/s2, consistent with field-based observations. Results of our study offer additional capabilities for assessing risks associated with urban growth and development in areas exposed to debris flow hazards. © 2018 Elsevier B.V.Ítem Large-magnitude late Holocene seismic activity in the Pereira-Armenia region, Colombia(GEOLOGICAL SOC AMER INC, 2011-01-01) Lalinde, C.P.P.; Toro, G.E.; Velásquez, A.; Audemard, F.A.M.; Lalinde, C.P.P.; Toro, G.E.; Velásquez, A.; Audemard, F.A.M.; Universidad EAFIT. Departamento de Ciencias; Geología Ambiental y TectónicaThe Pereira-Armenia region, located west of the Colombian Central Cordillera, is crosscut by the Romeral fault system, which consists of an active north-south- trending, left-lateral, strike-slip fault system with a secondary thrust component in the Eje Cafetero zone (4°N-5°N). The terrain where the Liceo Taller San Miguel high school sits-9 km south of Pereira-is draped with an ~2-m-thick layer of volcanic ash younger than 30 k.y. in age. This locality has been affected by both N40°E- and E-W-trending faults that correspond to thrust faults or folds and normal rightlateral, strike-slip faults, respectively, in the tectonic model for the zone. Two kinds of strong fi eld evidence for the E-W faults were found at a site named Canchas: (1) the 50°N tilt of the late Quaternary interbedded sequence of volcanic ash and three paleosols, and (2) a vertical fault throw of ~1.70 m affecting the sequence (layers). A normal vertical throw of ~0.65 m at Parqueadero stands as a proof of the activity of the N40°E-trending faults. This latter faulting does not correspond with the stress tensor proposed for this region, and thus this deformation could be interpreted as being a consequence of fl exural slip induced by a NE-SW-striking blind thrust, where reverse faulting along bedding at depth is seen as normal faulting at the surface. Measured offsets could have generated seismic events of at least Mw 6.6 for the NE-trending fault that affected the paleosols and volcanic ash sequence at 13,150 ± 310 14C yr B.P., and a seismic event of Mw 6.9 for the E-W-trending fault that affected the paleosols and volcanic ash sequence at 19,710 ± 830 14C yr B.P. These two recently identifi edfaults are now named the Tribunas (NE-SW) and the Cestillal (E-W) faults. Up to now, the fault and its seismogenic potential determinations in this region have been based solely on morphologic evidence. The maximum seismic magnitude estimated for this region ranged from Mw 6.2 to Mw 6.6 for seismic sources 35 km away from the site. Seismic magnitudes like the one calculated in this work (Mw 6.9) were previously estimated only for source-site distances greater than 50 km. This work provides fi eld evidence that leads to a better understanding of the seismic activity of this region in the last 30 k.y. and confi rms the occurrence of local Mw >6.5 seismic events in this region. Although volcanic ash drapes and eventually hides the geomorphic evidence of active deformation, it turns out to be a perfect chronometer of a fault's activity whenever the deformation is revealed, as in this case. After the Armenia event of 1999, it is imperative to examine the seismic hazard assessments of this region in terms of local crustal seismicity. © 2011 The Geological Society of America. All rights reserved.Ítem Prediction of landslide occurrence in urban areas located on volcanic ash soils in Pereira, Colombia(Springer Verlag, 2004-01-01) Rios, D.A.; Hermelin, M.; Rios, D.A.; Hermelin, M.; Universidad EAFIT. Departamento de Ciencias; Geología Ambiental y TectónicaAs a result of the 25 January 1999 Armenia earthquake, the city of Pereira (400,000 inhabitants), located on a volcanic ash-covered alluvial fan in the western limit of the Central Cordillera (Colombia), suffered 250 slope movements. After a complete inventory, a monitoring process of unstable areas was designed, based on repeated topographic surveys, soil pore saturation levels and visual inspections. The participation of the communities was crucial and permitted the prediction of slope movements between 2 weeks and 3 months in advance and the evacuation of the inhabitants. Three specific examples are discussed. The method could be improved by excavating observation trenches and observing in detail local rainfall. In all cases, the strong involvement of the community was considered indispensable for the success of the process. © Springer-Verlag 2004.