Examinando por Materia "geometry"
Mostrando 1 - 8 de 8
Resultados por página
Opciones de ordenación
Ítem Efficient solution for the diffraction of elastic SH waves by a wedge: Performance of various exact, asymptotic and simplified solutions(Elsevier Ltd, 2017-04-01) Aristizabal, V.H.; Velez, F.J.; Jaramillo, J.D.; Mecánica AplicadaThe diffraction of horizontally polarized shear waves by a semi-infinite wedge in frequency and time domains is studied. In particular, this work focus on the performance of different solutions, including the classical contributions from Macdonald, Sommerfeld and Kouyoumjian & Pathak. In addition, two fully analytical, simplified solutions are proposed using arguments from the so-called geometrical theory of diffraction. The main advantage of the two proposed solutions is the fact that the resulting solutions can be scaled to problems with arbitrary and complex geometries. Moreover, it is found that one of the proposed new solutions is highly efficient in terms of accuracy and computational speed as compared to alternative formulations (approximately 1000 times faster than the Macdonald and Kouyoumjian & Pathak solutions), thus, this important characteristic renders this solution ideal for implementation in GPUs (Graphics Processor Units) for multiscale modeling applications. © 2017 Elsevier LtdÍtem Observations about an approximate algorithm for the point robot motion planning problem(IEEE Computer Society, 2002-01-01) Trefftz, C.; Trefftz, H.; Universidad EAFIT. Departamento de Ingeniería de Sistemas; I+D+I en Tecnologías de la Información y las ComunicacionesObservations about an approximate parallel algorithm for the point robot motion planning problem are presented. The algorithm solves not only the original problem, but related problems as well. © 2002 IEEE.Ítem On The Mathematics of Musical Measures and Their Relation to Geometry(Universidad EAFIT, 2023) Lugos Abarca, Josué AlexisÍtem The role of volumetric power input in the growth, morphology, and production of a recombinant glycoprotein by Streptomyces lividans in shake flasks(ELSEVIER SCIENCE BV, 2014-09-15) Marin-Palacio, Luz D.; Gamboa-Suasnavart, Ramses A.; Valdez-Cruz, Norma A.; Servin-Gonzalez, Luis; Soledad Cordova-Aguilar, Ma.; Soto, Enrique; Kloeckner, Wolf; Buechs, Jochen; Trujillo-Roldan, Mauricio A.; Marin-Palacio, Luz D.; Gamboa-Suasnavart, Ramses A.; Valdez-Cruz, Norma A.; Servin-Gonzalez, Luis; Soledad Cordova-Aguilar, Ma.; Soto, Enrique; Kloeckner, Wolf; Buechs, Jochen; Trujillo-Roldan, Mauricio A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)The impact of flask geometry on Streptomyces lividans growth and morphology, production and O-mannosylation of a recombinant O-glycoprotein (APA from Mycobacterium tuberculosis) was described and associated to the evolution of the volumetric power input (P/V) in three shake flask geometries. During the exponential growth, the highest P/V was found in baffled flasks (BF) with 0.51kW/m3, followed by coiled flasks (CF) with 0.44kW/m3 and normal Erlenmeyer flasks (NF) with 0.20kW/m3 (flasks volume of 250mL, filling with 50mL and agitated at 150rpm). During the stationary phase, P/V decreased 20% in BF and CF, but increased two times in NF, surely due to changes in mycelial morphology and its effects on rheology. Also, NF cultures were carried out at a filling volume and agitation of 15mL, 150rpm (15mL-NF), and 25mL, 168rpm (25mL-NF), in order to raise P/V closely to the values obtained in CF. However, different growth, morphology and recombinant protein productivity were obtained. These data indicate that P/V is not a definitive parameter that can determine bacteria growth and morphology, not even glycoprotein production. But it can be proposed that the oxygen transfer in the center of the pellets and hydromechanical stress might be the more relevant parameters than P/V. © 2014 Elsevier B.V.Ítem The role of volumetric power input in the growth, morphology, and production of a recombinant glycoprotein by Streptomyces lividans in shake flasks(ELSEVIER SCIENCE BV, 2014-09-15) Marin-Palacio, Luz D.; Gamboa-Suasnavart, Ramses A.; Valdez-Cruz, Norma A.; Servin-Gonzalez, Luis; Soledad Cordova-Aguilar, Ma.; Soto, Enrique; Kloeckner, Wolf; Buechs, Jochen; Trujillo-Roldan, Mauricio A.; Universidad EAFIT. Departamento de Ciencias; Ciencias Biológicas y Bioprocesos (CIBIOP)The impact of flask geometry on Streptomyces lividans growth and morphology, production and O-mannosylation of a recombinant O-glycoprotein (APA from Mycobacterium tuberculosis) was described and associated to the evolution of the volumetric power input (P/V) in three shake flask geometries. During the exponential growth, the highest P/V was found in baffled flasks (BF) with 0.51kW/m3, followed by coiled flasks (CF) with 0.44kW/m3 and normal Erlenmeyer flasks (NF) with 0.20kW/m3 (flasks volume of 250mL, filling with 50mL and agitated at 150rpm). During the stationary phase, P/V decreased 20% in BF and CF, but increased two times in NF, surely due to changes in mycelial morphology and its effects on rheology. Also, NF cultures were carried out at a filling volume and agitation of 15mL, 150rpm (15mL-NF), and 25mL, 168rpm (25mL-NF), in order to raise P/V closely to the values obtained in CF. However, different growth, morphology and recombinant protein productivity were obtained. These data indicate that P/V is not a definitive parameter that can determine bacteria growth and morphology, not even glycoprotein production. But it can be proposed that the oxygen transfer in the center of the pellets and hydromechanical stress might be the more relevant parameters than P/V. © 2014 Elsevier B.V.Ítem SH Wave Number Green’s Function for a Layered, Elastic Half-Space. Part I: Theory and Dynamic Canyon Response by the Discrete Wave Number Boundary Element Method(SPRINGER BASEL AG, 2014-09-01) Restrepo, Doriam; David Gomez, Juan; Diego Jaramillo, Juan; Mecánica AplicadaWe present a closed-form frequency-wave number (? – k) Green’s function for a layered, elastic half-space under SH wave propagation. It is shown that for every (? – k) pair, the fundamental solution exhibits two distinctive features: (1) the original layered system can be reduced to a system composed by the uppermost superficial layer over an equivalent half-space; (2) the fundamental solution can be partitioned into three different fundamental solutions, each one carrying out a different physical interpretation, i.e., an equivalent half-space, source image impact, and dispersive wave effect, respectively. Such an interpretation allows the proper use of analytical and numerical integration schemes, and ensures the correct assessment of Cauchy principal value integrals. Our method is based upon a stiffness-matrix scheme, and as a first approach we assume that observation points and the impulsive SH line-source are spatially located within the uppermost superficial layer. We use a discrete wave number boundary element strategy to test the benefits of our fundamental solution. We benchmark our results against reported solutions for an infinitely long circular canyon subjected to oblique incident SH waves within a homogeneous half-space. Our results show an almost exact agreement with previous studies. We further shed light on the impact of horizontal strata by examining the dynamic response of the circular canyon to oblique incident SH waves under different layered half-space configurations and incident angles. Our results show that modifications in the layering structure manifest by larger peak ground responses, and stronger spatial variability due to interactions of the canyon geometry with trapped Love waves in combination with impedance contrast effects. © 2014, Springer Basel.Ítem Structural characterization of the (MeSH)4 potential energy surface(SPRINGER, 2013-05-01) Gomez, Sara; Guerra, Doris; David, Jorge; Restrepo, Albeiro; Universidad EAFIT. Departamento de Ciencias Básicas; Electromagnetismo Aplicado (Gema)A random walk on the PES for (MeSH)4 clusters produced 50 structural isomers held together by hydrogenbonding networks according to calculations performed at the B3LYP/6-311++G* * andMP2/6-311++G* * levels. The geometric motifs observed are somewhat similar to those encountered for the methanol tetramer, but the interactions responsible for cluster stabilization are quite different in origin. Cluster stabilization is not related to the number of hydrogen bonds. Two distinct, well-defined types of hydrogen bonds scattered over a wide range of distances are predicted. © Springer-Verlag Berlin Heidelberg 2012.Ítem Zylerberg, 1985 Contributions of the layer topology and mineral content to the elastic modulus and strength of fish scales(ELSEVIER SCIENCE BV, 2018-02-01) Murcia, S.; Miyamoto, Y.; Varma, M.P.; Ossa, A.; Arola, D.Fish scales are an interesting natural structural material and their functionality requires both flexibility and toughness. Our previous studies identified that there are spatial variations in the elastic properties of fish scales corresponding to the anatomical regions, and that they appear to be attributed to changes in the microstructure. In the present study, a model is proposed that describes the elastic behavior of elasmoid fish scales in terms of the relative contributions of the limiting layer and both the internal and external elasmodine. The mechanical properties of scales from the Megalops atlanticus (i.e. tarpon) were characterized in tension and compared with predictions from the model. The average error between the predicted and the experimental properties was 7%. It was found that the gradient in mineral content and aspect ratio of the apatite crystals in the limiting layer played the most important roles on the elastic modulus of the scales. Furthermore, misalignment of plies in the external elasmodine from the longitudinal direction was shown to reduce the elastic modulus significantly. This is one approach for modulating the fish scale flexibility for a high mineral content that is required to increase the resistance to puncture. © 2017