Examinando por Materia "genetics"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Ceratocystis cacaofunesta genome analysis reveals a large expansion of extracellular phosphatidylinositol-specific phospholipase-C genes (PI-PLC)(BioMed Central Ltd., 2018-01-17) Molano, E.P.L.; Cabrera, O.G.; Jose, J.; do Nascimento, L.C.; Carazzolle, M.F.; Teixeira, P.J.P.L.; Alvarez, J.C.; Tiburcio, R.A.; Tokimatu Filho, P.M.; de Lima, G.M.A.; Guido, R.V.C.; Corrêa, T.L.R.; Leme, A.F.P.; Mieczkowski, P.; Pereira, G.A.G.; Universidad EAFIT. Departamento de Ciencias; Biodiversidad, Evolución y ConservaciónBackground: The Ceratocystis genus harbors a large number of phytopathogenic fungi that cause xylem parenchyma degradation and vascular destruction on a broad range of economically important plants. Ceratocystis cacaofunesta is a necrotrophic fungus responsible for lethal wilt disease in cacao. The aim of this work is to analyze the genome of C. cacaofunesta through a comparative approach with genomes of other Sordariomycetes in order to better understand the molecular basis of pathogenicity in the Ceratocystis genus. Results: We present an analysis of the C. cacaofunesta genome focusing on secreted proteins that might constitute pathogenicity factors. Comparative genome analyses among five Ceratocystidaceae species and 23 other Sordariomycetes fungi showed a strong reduction in gene content of the Ceratocystis genus. However, some gene families displayed a remarkable expansion, in particular, the Phosphatidylinositol specific phospholipases-C (PI-PLC) family. Also, evolutionary rate calculations suggest that the evolution process of this family was guided by positive selection. Interestingly, among the 82 PI-PLCs genes identified in the C. cacaofunesta genome, 70 genes encoding extracellular PI-PLCs are grouped in eight small scaffolds surrounded by transposon fragments and scars that could be involved in the rapid evolution of the PI-PLC family. Experimental secretome using LC-MS/MS validated 24% (86 proteins) of the total predicted secretome (342 proteins), including four PI-PLCs and other important pathogenicity factors. Conclusion: Analysis of the Ceratocystis cacaofunesta genome provides evidence that PI-PLCs may play a role in pathogenicity. Subsequent functional studies will be aimed at evaluating this hypothesis. The observed genetic arsenals, together with the analysis of the PI-PLC family shown in this work, reveal significant differences in the Ceratocystis genome compared to the classical vascular fungi, Verticillium and Fusarium. Altogether, our analyses provide new insights into the evolution and the molecular basis of plant pathogenicity. © 2018 The Author(s).Ítem Ceratocystis cacaofunesta genome analysis reveals a large expansion of extracellular phosphatidylinositol-specific phospholipase-C genes (PI-PLC)(BioMed Central Ltd., 2018-01-17) Molano, E.P.L.; Cabrera, O.G.; Jose, J.; do Nascimento, L.C.; Carazzolle, M.F.; Teixeira, P.J.P.L.; Alvarez, J.C.; Tiburcio, R.A.; Tokimatu Filho, P.M.; de Lima, G.M.A.; Guido, R.V.C.; Corrêa, T.L.R.; Leme, A.F.P.; Mieczkowski, P.; Pereira, G.A.G.; Universidad EAFIT. Departamento de Ciencias; Ciencias Biológicas y Bioprocesos (CIBIOP)Background: The Ceratocystis genus harbors a large number of phytopathogenic fungi that cause xylem parenchyma degradation and vascular destruction on a broad range of economically important plants. Ceratocystis cacaofunesta is a necrotrophic fungus responsible for lethal wilt disease in cacao. The aim of this work is to analyze the genome of C. cacaofunesta through a comparative approach with genomes of other Sordariomycetes in order to better understand the molecular basis of pathogenicity in the Ceratocystis genus. Results: We present an analysis of the C. cacaofunesta genome focusing on secreted proteins that might constitute pathogenicity factors. Comparative genome analyses among five Ceratocystidaceae species and 23 other Sordariomycetes fungi showed a strong reduction in gene content of the Ceratocystis genus. However, some gene families displayed a remarkable expansion, in particular, the Phosphatidylinositol specific phospholipases-C (PI-PLC) family. Also, evolutionary rate calculations suggest that the evolution process of this family was guided by positive selection. Interestingly, among the 82 PI-PLCs genes identified in the C. cacaofunesta genome, 70 genes encoding extracellular PI-PLCs are grouped in eight small scaffolds surrounded by transposon fragments and scars that could be involved in the rapid evolution of the PI-PLC family. Experimental secretome using LC-MS/MS validated 24% (86 proteins) of the total predicted secretome (342 proteins), including four PI-PLCs and other important pathogenicity factors. Conclusion: Analysis of the Ceratocystis cacaofunesta genome provides evidence that PI-PLCs may play a role in pathogenicity. Subsequent functional studies will be aimed at evaluating this hypothesis. The observed genetic arsenals, together with the analysis of the PI-PLC family shown in this work, reveal significant differences in the Ceratocystis genome compared to the classical vascular fungi, Verticillium and Fusarium. Altogether, our analyses provide new insights into the evolution and the molecular basis of plant pathogenicity. © 2018 The Author(s).Ítem Evolutionary and sequence-based relationships in bacterial AdoMet-dependent non-coding RNA methyltransferases(BioMed Central Ltd., 2014-01-01) Mosquera-Rendón, J.; Cárdenas-Brito, S.; Pineda, J.D.; Corredor, M.; Benítez-Páez, A.; Mosquera-Rendón, J.; Cárdenas-Brito, S.; Pineda, J.D.; Corredor, M.; Benítez-Páez, A.; Universidad EAFIT. Departamento de Ingeniería de Sistemas; I+D+I en Tecnologías de la Información y las ComunicacionesBackground: RNA post-transcriptional modification is an exciting field of research that has evidenced this editing process as a sophisticated epigenetic mechanism to fine tune the ribosome function and to control gene expression. Although tRNA modifications seem to be more relevant for the ribosome function and cell physiology as a whole, some rRNA modifications have also been seen to play pivotal roles, essentially those located in central ribosome regions. RNA methylation at nucleobases and ribose moieties of nucleotides appear to frequently modulate its chemistry and structure. RNA methyltransferases comprise a superfamily of highly specialized enzymes that accomplish a wide variety of modifications. These enzymes exhibit a poor degree of sequence similarity in spite of using a common reaction cofactor and modifying the same substrate type. Results: Relationships and lineages of RNA methyltransferases have been extensively discussed, but no consensus has been reached. To shed light on this topic, we performed amino acid and codon-based sequence analyses to determine phylogenetic relationships and molecular evolution. We found that most Class I RNA MTases are evolutionarily related to protein and cofactor/vitamin biosynthesis methyltransferases. Additionally, we found that at least nine lineages explain the diversity of RNA MTases. We evidenced that RNA methyltransferases have high content of polar and positively charged amino acid, which coincides with the electrochemistry of their substrates. Conclusions: After studying almost 12,000 bacterial genomes and 2,000 patho-pangenomes, we revealed that molecular evolution of Class I methyltransferases matches the different rates of synonymous and non-synonymous substitutions along the coding region. Consequently, evolution on Class I methyltransferases selects against amino acid changes affecting the structure conformation. © 2014 Mosquera-Rendón et al.; licensee BioMed Central Ltd.Ítem Paracoccidioides spp. catalases and their role in antioxidant defense against host defense responses(Elsevier, 2017-03-01) Tamayo, D.; Muñoz, J.F.; Almeida, A.J.; Puerta, J.D.; Restrepo, Á.; Cuomo, C.A.; McEwen, J.G.; Hernández, O.; Universidad EAFIT. Departamento de Ciencias; Ciencias Biológicas y Bioprocesos (CIBIOP)Dimorphic human pathogenic fungi interact with host effector cells resisting their microbicidal mechanisms. Yeast cells are able of surviving within the tough environment of the phagolysosome by expressing an antioxidant defense system that provides protection against host-derived reactive oxygen species (ROS). This includes the production of catalases (CATs). Here we identified and analyzed the role of CAT isoforms in Paracoccidioides, the etiological agent of paracoccidioidomycosis. Firstly, we found that one of these isoforms was absent in the closely related dimorphic pathogen Coccidioides and dermatophytes, but all of them were conserved in Paracoccidioides, Histoplasma and Blastomyces species. We probed the contribution of CATs in Paracoccidioides by determining the gene expression levels of each isoform through quantitative RT-qPCR, in both the yeast and mycelia phases, and during the morphological switch (transition and germination), as well as in response to oxidative agents and during interaction with neutrophils. PbCATP was preferentially expressed in the pathogenic yeast phase, and was associated to the response against exogenous H2O2. Therefore, we created and analyzed the virulence defects of a knockdown strain for this isoform, and found that CATP protects yeast cells from H2O2 generated in vitro and is relevant during lung infection. On the other hand, CATA and CATB seem to contribute to ROS homeostasis in Paracoccidioides cells, during endogenous oxidative stress. CAT isoforms in Paracoccidioides might be coordinately regulated during development and dimorphism, and differentially expressed in response to different stresses to control ROS homeostasis during the infectious process, contributing to the virulence of Paracoccidioides. © 2017 Elsevier Inc.