Examinando por Materia "data management"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Colombia's cyberinfrastructure for biodiversity: Building data infrastructure in emerging countries to foster socioeconomic growth(2019-12-22) De Vega, Jose J.; Davey, Robert P.; Duitama, Jorge; Escobar, Dairo; Cristancho, Marco A.; Etherington, Graham J.; Minotto, Alice; Pineda J.D.; Correa Alvarez J; Camargo, Anyela V.; Haerty, Wilfried; Mallarino, Juan P.; Barreto, Emiliano; Fuentes, Narcis; Di, Federica; Universidad EAFIT. Departamento de Ciencias; Ciencias Biológicas y Bioprocesos (CIBIOP)Science and innovation are not a luxury but a prerequisite for social and economic development (Annan, 2003).Ítem Colombia's cyberinfrastructure for biodiversity: Building data infrastructure in emerging countries to foster socioeconomic growth(2019-12-22) De Vega, Jose J.; Davey, Robert P.; Duitama, Jorge; Escobar, Dairo; Cristancho, Marco A.; Etherington, Graham J.; Minotto, Alice; Pineda J.D.; Correa Alvarez J; Camargo, Anyela V.; Haerty, Wilfried; Mallarino, Juan P.; Barreto, Emiliano; Fuentes, Narcis; Di, Federica; De Vega, Jose J.; Davey, Robert P.; Duitama, Jorge; Escobar, Dairo; Cristancho, Marco A.; Etherington, Graham J.; Minotto, Alice; Pineda J.D.; Correa Alvarez J; Camargo, Anyela V.; Haerty, Wilfried; Mallarino, Juan P.; Barreto, Emiliano; Fuentes, Narcis; Di, Federica; Universidad EAFIT. Departamento de Ingeniería de Sistemas; I+D+I en Tecnologías de la Información y las ComunicacionesScience and innovation are not a luxury but a prerequisite for social and economic development (Annan, 2003).Ítem The p-Regions Problem(WILEY-BLACKWELL, 2011-01-01) Duque, Juan C.; Church, Richard L.; Middleton, Richard S.; Universidad EAFIT. Departamento de Economía y Finanzas; Research in Spatial Economics (RISE)The p-regions problem involves the aggregation or clustering of n small areas into p spatially contiguous regions while optimizing some criteria. The main objective of this article is to explore possible avenues for formulating this problem as a mixed integer-programming (MIP) problem. The critical issue in formulating this problem is to ensure that each region is a spatially contiguous cluster of small areas. We introduce three MIP models for solving the p regions problem. Each model minimizes the sum of dissimilarities between all pairs of areas within each region while guaranteeing contiguity. Three strategies designed to ensure contiguity are presented: (1) an adaptation of the Miller, Tucker, and Zemlin tour-breaking constraints developed for the traveling salesman problem; (2) the use of ordered-area assignment variables based upon an extension of an approach by Cova and Church for the geographical site design problem; and (3) the use of flow constraints based upon an extension of work by Shirabe. We test the efficacy of each formulation as well as specify a strategy to reduce overall problem size. © 2011 The Ohio State University.