Examinando por Materia "bacterial strain"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Bacillus subtilis EA-CB0575 genome reveals clues for plant growth promotion and potential for sustainable agriculture(Springer, 2020-01-01) Franco-Sierra, N.D.; Posada, L.F.; Santa-María, G.; Romero-Tabarez, M.; Villegas-Escobar, V.; Álvarez, J.C.; Universidad EAFIT. Departamento de Ciencias; Ciencias Biológicas y Bioprocesos (CIBIOP)Bacillus subtilis is a remarkably diverse bacterial species that displays many ecological functions. Given its genomic diversity, the strain Bacillus subtilis EA-CB0575, isolated from the rhizosphere of a banana plant, was sequenced and assembled to determine the genomic potential associated with its plant growth promotion potential. The genome was sequenced by Illumina technology and assembled using Velvet 1.2.10, resulting in a whole genome of 4.09 Mb with 4332 genes. Genes involved in the production of indoles, siderophores, lipopeptides, volatile compounds, phytase, bacilibactin, and nitrogenase were predicted by gene annotation or by metabolic pathway prediction by RAST. These potential traits were determined using in vitro biochemical tests, finding that B. subtilis EA-CB0575 produces two families of lipopeptides (surfactin and fengycin), solubilizes phosphate, fixes nitrogen, and produces indole and siderophores compounds. Finally, strain EA-CB0575 increased 34.60% the total dry weight (TDW) of tomato plants with respect to non-inoculated plants at greenhouse level. These results suggest that the identification of strain-specific genes and predicted metabolic pathways might explain the strain potential to promote plant growth by several mechanisms of action, accelerating the development of plant biostimulants for sustainable agricultural. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.Ítem Fengycin C produced by Bacillus subtilis EA-CB0015.(AMER CHEMICAL SOC, 2013-04-26) Villegas-Escobar, Valeska; Ceballos, Isabel; Mira, John J.; Edith Argel, Luz; Orduz Peralta, Sergio; Romero-Tabarez, Magally; Universidad EAFIT. Departamento de Ciencias; Ciencias Biológicas y Bioprocesos (CIBIOP)Bacillus subtilis EA-CB0015 was isolated from the phyllosphere of a banana plant and tested for its potential to produce bioactive compounds against Mycosphaerella fijiensis. Using a dual plate culture technique the cell-free supernatant of B. subtilis EA-CB0015 produced inhibition values of 89 +/- 1%. The active compounds were purified by solid-phase extraction and HPLC, and their primary structures determined using mass spectrometry and amino acid analysis. A new fengycin isoform, fengycin C, with the amino acid sequence Glu-Orn-Tyr-Thr-Glu-Val-Pro-Gln-Thr-Ile was isolated. The peptidic moiety differs from fengycin B at position 9 and from fengycin A at positions 6 and 9. The beta-hydroxy fatty acyl chain is connected to the N-terminal of the decapeptide and can be saturated or unsaturated, ranging from 14 to 18 carbons. The C-terminal residue of the peptidic moiety is linked to the tyrosine residue at position 3, forming the branching point of the acyl peptide and the eight-membered cyclic lactone.