Examinando por Materia "artificial intelligence"
Mostrando 1 - 6 de 6
Resultados por página
Opciones de ordenación
Ítem Edificios inteligentes que manejan sus sistemas de climatización(Universidad EAFIT, 2020-12-01) Martinez Guerrero, Christian Alexander; Martinez-Guerrero, Christian Alexander; Morales Escobar, L; Aguilar, Jose; Garcés Jiménez, Alberto; Gutierrez De Mesa, José Antonio; Gómez Pulido, Jose Manuel; GIDITICÍtem Genomic Prediction and Genome-Wide Association Analysis in Common Bean (Phaseolus vulgaris l.) × Tepary bean (P. acutifolius a. gray) Inter-specific Advanced Lines at the Caribbean Coast of Colombia(Universidad EAFIT, 2023) López Hernández, Luis Felipe; Villanueva Mejía, Diego Fernando; Cortés Vera, Andrés JavierThe negative effects of the climate change are risking global food security with 828 million people facing hunger, which is almost 16 times the population of Colombia. Given this scenario, legumes as common bean has offered a nature-based solution to source nutrients for rural communities in Latin America thanks to their high content of nutrients. For this reason, it is imperative to speed up the molecular genetic breading of common beans so that they can be cultivated in regions affected by extreme climate change, one of which is coastal Colombian. Therefore, in order to bridge this gap, this study aimed coupling an advanced panel of common bean (Phaseolus vulgaris L.) × tepary bean (P. acutifolius A. Gray) inter-specific lines with Bayesian regression algorithms to identify novel sources of adaptation to the humid and dry sub-regions at the Caribbean coast of Colombia, where common bean typically exhibits maladaptation to extreme heat waves. A total of 87 advanced lines with inter-specific ancestries were genotyped by sequencing (GBS), leading to the discovery of 15,645 single-nucleotide polymorphism (SNP) markers. Three yield components and two biomass variables were recorded for each genotype and inputted in several Bayesian regression models to identify the top genotypes with the best genetic breeding values across three localities in coastal Colombia. We explored the comparative analysis of several regression approaches where the model with the best performance in all traits and environments was BayesC. Also, we compared the utilization of all markers and only those determined as associated by a priori GWAS models. Better prediction ability with the complete SNP set was indicative of missing heritability as part of GWAS reconstructions. Furthermore, optimal SNP sets per environment and trait were determined to the top 500 most explicative markers according to their β regression effects. These 500 SNPs on average overlapped in 5.24 % across localities, which reinforced the environmentally dependent nature of polygenic adaptation. Finally, we retrieved the genomic estimated breeding values (GEBVs), and selected the top 10 genotypes for each environment and trait as part of a recommendation scheme targeting narrow adaption. The genotypes and SNP markers identified in this study as candidates for abiotic stress have the potential to be used in the following cycles as part of the long-term bean breeding program for coastal tropical regions.Ítem Pensamientos poco artificiales(Universidad EAFIT, 2024-08-23) Querubín, Valeria; Universidad EAFITÍtem The possibilities of artificial intelligence development(UNIV COOPERATIVE COLOMBIA, 2019-01-01) Quintero-Montoya, OL; Universidad EAFIT. Escuela de Ciencias; Modelado MatemáticoIn the context of the broad positioning of artificial intelligence-thanks to the effects of globalization generated by large computer companies called glasses: Google, Amazon, Facebook and Apple-it is imperative to take up the fundamental theoretical aspects, the variety of technical aspects, the relevance of applications in different areas and the ethical implications surrounding intelligent systems. In the framework of this book, this chapter aims to demystify the aspects that have idealized machine learning and artificial intelligence. At the same time, it invites to discuss the elements that allow the global and national context to be key to next developments that will increase the economic capacity of the countries, the research advances and the level of life of the human beings.Ítem Proceso de ASC - IMPLICACIONES ETICAS DE LA IMPLEMENTACION DE LA INTELIGENCIA ARTIFICIAL EN EL PROCESO JURISDICCIONAL(Universidad EAFIT, 2021) Jaramillo Restrepo, Juan Pablo; Vélez, Ana Isabel; Londoño Henao, Carolina; Salas Mazo, Daniel; Gómez Forero, Juan Felipe; Hincapié Velásquez, Valentina; Posada Botero, José David; Universidad EAFITEthical implications of implementing artificial intelligence in the judicial process are critically examined. This raises questions regarding the ethical consequences of applying artificial intelligence and using related technologies, particularly concerning impartiality, judicial independence, and the requirement to provide reasoning for judicial decisions as a manifestation of the fundamental rights to due process and effective judicial protection.Ítem Proceso de ASC - INTELIGENCIA ARTIFICIAL: NUEVAS TENDENCIAS EN EL DERECHO PROCESAL(Universidad EAFIT, 2020) Hurtado Aristizábal, Andrés; Gómez Franco, Carmen; Trujillo Montoya, Carolina; Uribe, Juan Rafael; Lotero Aguirre, Juan Sebastián; Zuluaga Mejía, Ricardo; Londoño Henao, Carolina; Jaramillo Restrepo, Juan Pablo; Vélez, Ana Isabel; Cortés Sánchez, Carolina; Posada Ríos, Manuela; Castaño Marín, Alejandro; Posada Botero, José David; Universidad EAFITThe following study was conducted with the objective of evaluating the application of artificial intelligence in the judicial process, aiming to find a tool that could contribute to reducing congestion in the administration of justice. This led to the identification that a significant percentage of the cases handled by civil judges are executive processes. Therefore, it is proposed that some stages of these processes could be developed through artificial intelligence, particularly through the automation of certain phases.