Logotipo del repositorio
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Listar por
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Third and fourth moments"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Publicación
    On a Combination of Skewness and Kurtosis Matrices for Pro jection Pursuit Exploratory Cluster Analysis
    (Universidad EAFIT, 2025) Jaramillo Osorio, Esteban; Ortiz Arias, Santiago
    Skewness and kurtosis are statistical measures critical for understanding distribu- tion characteristics, particularly in normality testing, clustering, and outlier detec- tion. While kurtosis has been widely explored in the literature, skewness remains un- derutilized despite its potential for identifying asymmetrical patterns in data. Com- bining these measures could create a robust tool for exploratory data analysis (EDA). This research proposes a novel approach by developing a convex combination of skew- ness and kurtosis matrices. Using iterative procedures to maximize or minimize this combination, we aim to construct a matrix serving as a projection index for a projec- tion pursuit algorithm. This matrix can identify clusters and outliers more effectively than either measure alone. To validate the methodology, experiments on artificial datasets and real-world data demonstrate the benefits of this combined approach in detecting non-normal features, evaluating clustering performance, and enhancing outlier detection.

Vigilada Mineducación

Universidad con Acreditación Institucional hasta 2026 - Resolución MEN 2158 de 2018

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar Sugerencias