Examinando por Materia "Stress analysis"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Fast Spectral Formulations of Thin Plate Laser Heating with GPU Implementation(Institute of Electrical and Electronics Engineers Inc., 2020-01-01) Mejia-Parra D.; Arbelaiz A.; Moreno A.; Posada J.; Ruiz-Salguero O.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEIn the context of numerical methods, the problem of frequency-domain (spectral) simulations is crucial for the solution of Partial Differential Equations. Fast Fourier Transform (FFT) algorithms significantly reduce the computational cost of such simulations and enable parallelization using Graphics Processing Units (GPUs). In the particular subdomain of laser heating/cutting of rectangular metal plates, fast simulation is required for tool path planning, parameter optimization and additive manufacturing. The currently used methods include frequency-domain analytic solutions for single-beam and multi-beam laser heating. However, the problem of formulating these spectral problems in terms of Fourier methods and implementing them in efficient manner remains. To overcome these limitations, this article presents two different schemes that translate the problem of laser beam heating of metal plates into equivalent FFT problems. The results show significant improvements in terms of executions times, being 100× faster than current state-of-the-art algorithms. Future work needed involves the inclusion of stress analysis, complex plate geometries and non-constant material properties for the plate. © 2020 IEEE.Ítem Shape optimisation of continuum structures via evolution strategies and fixed grid finite element analysis(SPRINGER, 2004-01-01) Garcia, MJ; Gonzalez, CA; Mecánica AplicadaEvolution strategies (ES) are very robust and general techniques for finding global optima in optimisation problems. As with all evolutionary algorithms, ES apply evolutionary operators and select the most fit from a set of possible solutions. Unlike genetic algorithms, ES do not use binary coding of individuals, working instead with real variables. Many recent studies have applied evolutionary algorithms to structural problems, particularly the optimisation of trusses. This paper focuses on shape optimisation of continuum structures via ES. Stress analysis is accomplished by using the fixed grid finite element method, which reduces the computing time while keeping track of the boundary representation of the structure. This boundary is represented by b-spline functions, circles, and polylines, whose control points constitute the parameters that govern the shape of the structure. Evolutionary operations are applied to each set of variables until a global optimum is reached. Several numerical examples are presented to illustrate the performance of the method. Finally, structures with multiple load cases are considered along with examples illustrating the results obtained.Ítem Triaxial deformation behavior of bituminous mixes(ASCE-AMER SOC CIVIL ENGINEERS, 2010-02-01) Ossa, E. A.; Deshpande, V. S.; Cebon, D.; Ossa, E. A.; Deshpande, V. S.; Cebon, D.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThe triaxial compressive response of bituminous mixes with volume fractions of aggregate in the range 52 to 85% was investigated over a wide range stresses and strain rates. The types of loadings considered include triaxial monotonic constant stress and constant applied strain rate, as well as creep recovery, continuous cyclic, and stress pulse train loadings. The mixes with a "fully dense" aggregate skeleton were found to dilate under all loading conditions and the creep response of the mixes was dependent on both the deviatoric and hydrostatic stresses. By contrast, recovery was found to occur under zero applied deviatoric stresses with the recovery rate only dependent on the "recoverable strain" and independent of any superimposed hydrostatic stress. Continuous and pulse loading cyclic stress-controlled tests showed that the response of the mixes was governed by the mean applied deviatoric stress in the continuous cyclic tests while strain recovery was important in the pulse loading tests. A phenomenological constitutive model was proposed to fit the measured triaxial response of the bituminous mixes and shown to capture the measurements over all the triaxial stress states and loading time histories investigated here. Furthermore, the model was extended to capture the temperature dependence of the mixtures which is governed by the temperature dependence of the bitumen binder. © 2010 ASCE.