Examinando por Materia "Strain rate"
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem Designed for resistance to puncture: The dynamic response of fish scales(ELSEVIER SCIENCE BV, 2019-01-01) Ghods S.; Murcia S.; Ossa E.A.; Arola D.; Ghods S.; Murcia S.; Ossa E.A.; Arola D.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaNatural dermal armors are serving as a source of inspiration in the pursuit of “next-generation” structural materials. Although the dynamic strain response of these materials is arguably the most relevant to their performance as armors, limited work has been performed in this area. Here, uniaxial tension and transverse puncture tests were performed on specimens obtained from the scales of Asian carp over strain rates spanning seven decades, from 10-4 to 103 s-1. The importance of anatomical variations was explored by comparing the performance of scales from the head, middle and tail regions. In both loading orientations, the scales exhibited a significant increase in the resistance to failure with loading rate. The rate sensitivity was substantially higher for transverse loading than for in-plane tension, with average strain rate sensitivity exponents for measures of the toughness of 0.35 and 0.08, respectively. Spatial variations in the properties were largest in the puncture responses, and scales from the head region exhibited the greatest resistance to puncture overall. The results suggest that the layered microstructure of fish scales is most effective at resisting puncture, rather than in-plane tension, and its effectiveness increases with rate of loading. X-ray microCT showed that delamination of plies in the internal elasmodine and stretching of the fibrils were key mechanisms of energy dissipation in response to puncture loading. Understanding contributions from the microstructure to this behavior could guide the development of flexible engineered laminates for penetration resistance and other related applications. © 2018 Elsevier LtdÍtem Dislocation density based flow stress model applied to the PFEM simulation of orthogonal cutting processes of Ti-6Al-4V(MDPI AG, 2020-01-01) Rodríguez, J.M.; Larsson, S.; Carbonell, J.M.; Jonsén, P.; Rodríguez, J.M.; Larsson, S.; Carbonell, J.M.; Jonsén, P.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasMachining of metals is an essential operation in the manufacturing industry. Chip formation in metal cutting is associated with large plastic strains, large deformations, high strain rates and high temperatures, mainly located in the primary and in the secondary shear zones. During the last decades, there has been significant progress in numerical methods and constitutive modeling for machining operations. In this work, the Particle Finite Element Method (PFEM) together with a dislocation density (DD) constitutive model are introduced to simulate the machining of Ti-6Al-4V. The work includes a study of two constitutive models for the titanium material, the physically based plasticity DD model and the phenomenology based Johnson-Cook model. Both constitutive models were implemented into an in-house PFEM software and setup to simulate deformation behaviour of titanium Ti6Al4V during an orthogonal cutting process. Validation show that numerical and experimental results are in agreement for different cutting speeds and feeds. The dislocation density model, although it needs more thorough calibration, shows an excellent match with the results. This paper shows that the combination of PFEM together with a dislocation density constitutive model is an excellent candidate for future numerical simulations of mechanical cutting. © 2020 by the authors.Ítem Interfibril hydrogen bonding improves the strain-rate response of natural armour(Royal Society Publishing, 2019-01-01) Arola D.; Ghods S.; Son C.; Murcia S.; Ossa E.A.; Arola D.; Ghods S.; Son C.; Murcia S.; Ossa E.A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaFish scales are laminated composites that consist of plies of unidirectional collagen fibrils with twisted-plywood stacking arrangement. Owing to their composition, the toughness of scales is dependent on the intermolecular bonding within and between the collagen fibrils. Adjusting the extent of this bonding with an appropriate stimulus has implications for the design of next-generation bioinspired flexible armours. In this investigation, scales were exposed to environments of water or a polar solvent (i.e. ethanol) to influence the extent of intermolecular bonding, and their mechanical behaviour was evaluated in uniaxial tension and transverse puncture. Results showed that the resistance to failure of the scales increased with loading rate in both tension and puncture and that the polar solvent treatment increased both the strength and toughness through interpeptide bonding; the largest increase occurred in the puncture resistance of scales from the tail region (a factor of nearly 7). The increase in strength and damage tolerance with stronger intermolecular bonding is uncommon for structural materials and is a unique characteristic of the low mineral content. Scales from regions of the body with higher mineral content underwent less strengthening, which is most likely the result of interference posed by the mineral crystals to intermolecular bonding. Overall, the results showed that flexible bioinspired composite materials for puncture resistance should enrol constituents and complementary processing that capitalize on interfibril bonds. © 2019 The Author(s) Published by the Royal Society. All rights reserved.Ítem Time-dependent Mechanical Response at the Nanoscale(Elsevier B.V., 2020-01-01) Múnera, J.C.; Goswami, D.; Martinez, R.V.; Ossa, E.A.; Múnera, J.C.; Goswami, D.; Martinez, R.V.; Ossa, E.A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaModern nanofabrication processes on metals, polymers, and ceramics often require deforming these materials at strain rates ranging ~101 – 107 s–1. Therefore, there is a need to develop an appropriate methodology capable of measuring and predicting the effects of these deformation rates on the final mechanical response of the nanomaterial being processed. Here we report an experimental study of the indentation response of three materials with different nature and mechanical properties, but with known time-dependent mechanical responses. These materials allow validation of the findings under a wide variety of conditions. One metal (Pb), and two polymers (PMMA and PS), were indented at the sub-20 nm scale using commercial atomic force microscopy (AFM) probes. Based on our experimental findings, we also propose an analytical model for creeping solids in which their nanoscale mechanical behavior is completely described by two components: an elastic component (characterized by the Hertz contact model) and a time-dependent component (characterized by a power-law model). The proposed experimental protocol is easy to implement, and the analytical model can be extended to a large variety of materials. The ability to characterize the time-dependence of the mechanical response of different materials at the nanoscale will enable a better estimation of the effect of manufacturing processes on the properties and performance of nanomaterials. © 2020 Elsevier LtdÍtem Triaxial deformation behavior of bituminous mixes(ASCE-AMER SOC CIVIL ENGINEERS, 2010-02-01) Ossa, E. A.; Deshpande, V. S.; Cebon, D.; Ossa, E. A.; Deshpande, V. S.; Cebon, D.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThe triaxial compressive response of bituminous mixes with volume fractions of aggregate in the range 52 to 85% was investigated over a wide range stresses and strain rates. The types of loadings considered include triaxial monotonic constant stress and constant applied strain rate, as well as creep recovery, continuous cyclic, and stress pulse train loadings. The mixes with a "fully dense" aggregate skeleton were found to dilate under all loading conditions and the creep response of the mixes was dependent on both the deviatoric and hydrostatic stresses. By contrast, recovery was found to occur under zero applied deviatoric stresses with the recovery rate only dependent on the "recoverable strain" and independent of any superimposed hydrostatic stress. Continuous and pulse loading cyclic stress-controlled tests showed that the response of the mixes was governed by the mean applied deviatoric stress in the continuous cyclic tests while strain recovery was important in the pulse loading tests. A phenomenological constitutive model was proposed to fit the measured triaxial response of the bituminous mixes and shown to capture the measurements over all the triaxial stress states and loading time histories investigated here. Furthermore, the model was extended to capture the temperature dependence of the mixtures which is governed by the temperature dependence of the bitumen binder. © 2010 ASCE.