Examinando por Materia "Statistical optimization"
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the Response Surface Methodology as the optimization tool.(IWA PUBLISHING, 2012-01-01) GilPavas, Edison; Dobrosz-Gomez, Izabela; Angel Gomez-Garcia, Miguel; GilPavas, Edison; Dobrosz-Gomez, Izabela; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)The Response Surface Methodology (RSM) was applied as a tool for the optimization of the operational conditions of the photo-degradation of highly concentrated PY12 wastewater, resulting from a textile industry located in the suburbs of Medellin (Colombia). The Box-Behnken experimental Design (BBD) was chosen for the purpose of response optimization. The photo-Fenton process was carried out in a laboratory-scale batch photo-reactor. A multifactorial experimental design was proposed, including the following variables: the initial dyestuff concentration, the H(2)O(2) and the Fe(+2) concentrations, as well as the UV wavelength radiation. The photo-Fenton process performed at the optimized conditions resulted in ca. 100% of dyestuff decolorization, 92% of COD and 82% of TOC degradation. A kinetic study was accomplished, including the identification of some intermediate compounds generated during the oxidation process. The water biodegradability reached a final DBO(5)/DQO = 0.86 value.Ítem Decolorization and mineralization of yellow 5 (E102) by UV/Fe2+/H2O2 process. Optimization of the operational conditions by response surface methodology(Elsevier Masson SAS, 2015-10-01) GilPalvas, E.; Gómez, C.M.; Rynkowski, J.M.; Dobrosz-Gómez, I.; Gómez-García, M.Á.; GilPalvas, E.; Gómez, C.M.; Rynkowski, J.M.; Dobrosz-Gómez, I.; Gómez-García, M.Á.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)In this study, the optimization and implementation of a homogeneous photo-Fenton process for the decolorization and mineralization of a wastewater containing highly concentrated yellow 5 (E102) dye, resulting from an industry placed in the suburbs of Medellin (Colombia), is presented. Response surface methodology was applied as a tool for the optimization of operational conditions such as initial dyestuff concentration. H2O2 concentration, and UV-radiation power (number of lamps). The decolorization, degradation and mineralization efficiencies were used as response variables. The following conditions were found to be optimal for decolorization and mineralization of yellow 5:UV radiation of 365 nm (4W. one lamp), dye concentration of 200 mg/L, Fe2+ concentration of 1.0 mM, H2O2 concentration of 1.75 mL/L, treatment time of 180 min, Fe2+ concentration of 1 mM and pH = 3. Under these conditions (180 min), the photo-Fenton process allowed us to reach ca. 100% of color dye degradation, 99% of COD degradation, and 85% of mineralization (TOC). The scavenging effect of the CI- anion on the photodegradation process was also confirmed. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.Ítem Optimización de los Costos de Operación del Proceso de Electro-oxidación para una Planta de Tratamiento de Aguas Mediante Análisis Estadístico de Superficie de Respuesta(Centro de Informacion Tecnologica, 2016-01-01) GilPavas, E.; Medina, J.; Dobrosz-Gómez, I.; Gómez, M.-A.; GilPavas, E.; Medina, J.; Dobrosz-Gómez, I.; Gómez, M.-A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)The statistical optimization of the implementation and operational costs of an electrochemical-oxidation process for treatment of wastewater containing dye Yellow 23 was done. The aim was to optimize the operational parameters for the current density, conductivity, and area of electrodes per unit of volume in order to minimize the net present value (NPV) of the operation while maintaining a defined quality for the treated wastewater. To achieve this, the response surface methodology coupled to the Box-Behnken statistical design was used. The optimal conditions found were: a relationship of treated wastewater volume per area of electrodes of 9.076 mL/cm2, conductivity 4000 µS/cm, and current density 20 mA/cm2. At optimal conditions, the NPV for a 10 year operation is 998636 USD, which corresponds to a cost of 0.68USD/m3 of treated water.Ítem Statistical optimization of industrial textile wastewater treatment by electrochemical methods(SPRINGER, 2014-12-01) GilPavas, Edison; Medina, Jose; Dobrosz-Gomez, Izabela; Angel Gomez-Garcia, Miguel; GilPavas, Edison; Medina, Jose; Dobrosz-Gomez, Izabela; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)In this work, the Box–Behnken experimental design and the surface response methodology were applied for the optimization of the operational conditions of the electro-catalytic degradation of wastewaters, resulting from a local textile industry. The experiments were carried out in a laboratory scale batch cell reactor, with monopolar configuration, and electrodes made of boron-doped diamond (anode) and titanium (cathode). The multifactorial experimental design included the following variables: current density (i: 5–10 ?mA/cm2), pH (3–7), and submerged cathode area (CA: 8–24 ?cm2). To determine the process efficiency, the degradation percentage of: the chemical oxygen demand (%DCOD), the total organic carbon (%DTOC) and the color (%DC) were defined as response variables. The following optimal conditions for the electro-oxidation (EO) process were obtained: i ?= ?10 ?mA/cm2, pH = 3 and CA ?= ?16 ?cm2, reaching ca. 92 ?% of DC, 37 ?% of DCOD and 31 ?% of DTOC. The electro-Fenton (EF) and photo-electro-Fenton (PEF) processes were also evaluated at EO optimal conditions. For the EF process, with addition of iron (0.3 ?mM), the %DC, %DCOD and %DTOC was enhanced to 95, 52 and 45 ?%, respectively. For the PEF process (UV ?= ?365 ?nm), it was possible to reach 98 ?%DC, 56 ?%DCOD and 48 ?%DTOC. © 2014, Springer Science+Business Media Dordrecht.Ítem Treatment of automotive industry oily wastewater by electrocoagulation: statistical optimization of the operational parameters.(IWA PUBLISHING, 2009-11-01) GilPavas, Edison; Molina-Tirado, Kevin; Angel Gomez-Garcia, Miguel; GilPavas, Edison; Molina-Tirado, Kevin; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)An electrocoagulation process was used for the treatment of oily wastewater generated from an automotive industry in Medellin (Colombia). An electrochemical cell consisting of four parallel electrodes (Fe and Al) in bipolar configuration was implemented. A multifactorial experimental design was used for evaluating the influence of several parameters including: type and arrangement of electrodes, pH, and current density. Oil and grease removal was defined as the response variable for the statistical analysis. Additionally, the BOD(5), COD, and TOC were monitored during the treatment process. According to the results, at the optimum parameter values (current density = 4.3 mA/cm(2), distance between electrodes = 1.5 cm, Fe as anode, and pH = 12) it was possible to reach a c.a. 95% oils removal, COD and mineralization of 87.4% and 70.6%, respectively. A final biodegradability (BOD(5)/COD) of 0.54 was reached.