Examinando por Materia "Selection of materials"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Finite difference calculations of permeability in large domains in a wide porosity range(Springer Verlag, 2015-08-01) Osorno, M.; Uribe, D.; Ruiz, O.E.; Steeb, H.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEDetermining effective hydraulic, thermal, mechanical and electrical properties of porous materials by means of classical physical experiments is often time-consuming and expensive. Thus, accurate numerical calculations of material properties are of increasing interest in geophysical, manufacturing, bio-mechanical and environmental applications, among other fields. Characteristic material properties (e.g. intrinsic permeability, thermal conductivity and elastic moduli) depend on morphological details on the porescale such as shape and size of pores and pore throats or cracks. To obtain reliable predictions of these properties it is necessary to perform numerical analyses of sufficiently large unit cells. Such representative volume elements require optimized numerical simulation techniques. Current state-of-the-art simulation tools to calculate effective permeabilities of porous materials are based on various methods, e.g. lattice Boltzmann, finite volumes or explicit jump Stokes methods. All approaches still have limitations in the maximum size of the simulation domain. In response to these deficits of the well-established methods we propose an efficient and reliable numerical method which allows to calculate intrinsic permeabilities directly from voxel-based data obtained from 3D imaging techniques like X-ray microtomography. We present a modelling framework based on a parallel finite differences solver, allowing the calculation of large domains with relative low computing requirements (i.e. desktop computers). The presented method is validated in a diverse selection of materials, obtaining accurate results for a large range of porosities, wider than the ranges previously reported. Ongoing work includes the estimation of other effective properties of porous media. © 2015, Springer-Verlag Berlin Heidelberg.Ítem Using material exploration and model-making as an approach for the development of concepts in design project courses(2012-01-01) Patiño Santa, L.F.One of the most used methodologies for project development in engineering consists of starting with a market necessity, developing a concept, materializing it, and designing details in order to enter the productive phase. These stages go in hand with the selection of materials, which is done at the end of the design process phase. However, in some cases selecting the material at the beginning of the process can be a source of innovation in product development. This paper describes a methodology used in "Project II", a first-year Product Design Engineering (PDE) course at Universidad EAFIT in which students initially select and explore non-conventional materials for furniture and then, through scaled models, develop concepts, culminating in a final product. This exploration helps students approach materials intuitively, develop their own creativity and boost their learning process of the creation and development of new product concepts.