Examinando por Materia "Seismic hazards"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Development of a fragility model for the residential building stock in South America(EARTHQUAKE ENGINEERING RESEARCH INST, 2017-05-01) Villar-Vega, Mabe; Silva, Vitor; Crowley, Helen; Yepes, Catalina; Tarque, Nicola; Acevedo, Ana Beatriz; Hube, Matias A.; Gustavo, Coronel D.; Maria, Hernan Santa; Mecánica AplicadaSouth America-in particular, the Andean countries-are exposed to high levels of seismic hazard, which, when combined with the elevated concentration of population and properties, has led to an alarming potential for human and economic losses. Although several fragility models have been developed in recent decades for South America, and occasionally used in probabilistic risk analysis, these models have been developed using distinct methodologies and assumptions, which renders any direct comparison of the results across countries questionable, and thus application at a regional level unreliable. This publication aims at obtaining a uniform fragility model for the most representative building classes in the Andean region, for large-scale risk analysis. To this end, sets of single-degree-of-freedom oscillators were created and subjected to a series of ground motion records using nonlinear time history analyses, and the resulting damage distributions were used to derive sets of fragility functions. © 2017, Earthquake Engineering Research Institute.Ítem Development of a fragility model for the residential building stock in South America(EARTHQUAKE ENGINEERING RESEARCH INST, 2017-05-01) Villar-Vega, Mabe; Silva, Vitor; Crowley, Helen; Yepes, Catalina; Tarque, Nicola; Acevedo, Ana Beatriz; Hube, Matias A.; Gustavo, Coronel D.; Maria, Hernan Santa; Villar-Vega, Mabe; Silva, Vitor; Crowley, Helen; Yepes, Catalina; Tarque, Nicola; Acevedo, Ana Beatriz; Hube, Matias A.; Gustavo, Coronel D.; Maria, Hernan Santa; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaSouth America-in particular, the Andean countries-are exposed to high levels of seismic hazard, which, when combined with the elevated concentration of population and properties, has led to an alarming potential for human and economic losses. Although several fragility models have been developed in recent decades for South America, and occasionally used in probabilistic risk analysis, these models have been developed using distinct methodologies and assumptions, which renders any direct comparison of the results across countries questionable, and thus application at a regional level unreliable. This publication aims at obtaining a uniform fragility model for the most representative building classes in the Andean region, for large-scale risk analysis. To this end, sets of single-degree-of-freedom oscillators were created and subjected to a series of ground motion records using nonlinear time history analyses, and the resulting damage distributions were used to derive sets of fragility functions. © 2017, Earthquake Engineering Research Institute.Ítem Development of a global seismic risk model(EARTHQUAKE ENGINEERING RESEARCH INST, 2020-02-02) Vitor Silva; Desmond Amo-Oduro; Alejandro Calderon; Catarina Costa; Jamal Dabbeek; Venetia Despotaki; Luis Martins; Marco Pagani; Anirudh Rao; Michele Simionato; Daniele Viganò; Catalina Yepes-Estrada; Ana Acevedo; Helen Crowley; Nick Horspool; Kishor Jaiswal; Murray Journeay; Massimiliano Pittore; Mecánica AplicadaSince 2015, the Global Earthquake Model (GEM) Foundation and its partners have been supporting regional programs and bilateral collaborations to develop an open global earthquake risk model. These efforts led to the development of a repository of probabilistic seismic hazard models, a global exposure dataset comprising structural and occupancy information regarding the residential, commercial and industrial buildings, and a comprehensive set of fragility and vulnerability functions for the most common building classes. These components were used to estimate probabilistic earthquake risk globally using the OpenQuake-engine, an open-source software for seismic hazard and risk analysis. This model allows estimating a number of risk metrics such as annualized average losses or aggregated losses for particular return periods, which are fundamental to the development and implementation of earthquake risk mitigation measures. © The Author(s) 2020.Ítem Development of a global seismic risk model(EARTHQUAKE ENGINEERING RESEARCH INST, 2020-02-02) Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Acevedo, A.; EUCENTRE; GNS Science; US Geological Survey; Natural Resources of Canada; GFZ Potsdam; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Global Earthquake Model Foundation; Acevedo, A.; EUCENTRE; GNS Science; US Geological Survey; Natural Resources of Canada; GFZ Potsdam; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaSince 2015, the Global Earthquake Model (GEM) Foundation and its partners have been supporting regional programs and bilateral collaborations to develop an open global earthquake risk model. These efforts led to the development of a repository of probabilistic seismic hazard models, a global exposure dataset comprising structural and occupancy information regarding the residential, commercial and industrial buildings, and a comprehensive set of fragility and vulnerability functions for the most common building classes. These components were used to estimate probabilistic earthquake risk globally using the OpenQuake-engine, an open-source software for seismic hazard and risk analysis. This model allows estimating a number of risk metrics such as annualized average losses or aggregated losses for particular return periods, which are fundamental to the development and implementation of earthquake risk mitigation measures. © The Author(s) 2020.