Examinando por Materia "Segmentation algorithms"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Face reconstruction with structured light(INSTICC-INST SYST TECHNOLOGIES INFORMATION CONTROL & COMMUNICATION, 2011-01-01) Congote, J.; Barandiaran, I.; Barandiaran, J.; Nieto, M.; Ruiz, O.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThis article presents a methodology for reconstruction of 3D faces which is based on stereoscopic images of the scene using active and passive surface reconstruction. A sequence of Gray patterns is generated, which are projected onto the scene and their projection recorded by a pair of stereo cameras. The images are rectified to make coincident their epipolar planes and so to generate a stereo map of the scene. An algorithm for stereo matching is applied, whose result is a bijective mapping between subsets of the pixels of the images. A particular connected subset of the images (e.g. the face) is selected by a segmentation algorithm. The stereo mapping is applied to such a subset and enables the triangulation of the two image readings therefore rendering the (x,y,z) points of the face, which in turn allow the reconstruction of the triangular mesh of the face. Since the surface might have holes, bilateral filters are applied to have the holes filled. The algorithms are tested in real conditions and we evaluate their performance with virtual datasets. Our results show a good reconstruction of the faces and an improvement of the results of passive systems.Ítem Hybrid geometry / topology based mesh segmentation for reverse engineering(PERGAMON-ELSEVIER SCIENCE LTD, 2018-06-01) Mejia D.; Ruiz-Salguero O.; Sánchez J.R.; Posada J.; Moreno A.; Cadavid C.A.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEMesh segmentation and parameterization are crucial for Reverse Engineering (RE). Bijective parameterizations of the sub-meshes are a sine-qua-non test for segmentation. Current segmentation methods use either (1) topologic or (2) geometric criteria to partition the mesh. Reported topology-based segmentations produce large sub-meshes which reject parameterizations. Geometry-based segmentations are very sensitive to local variations in dihedral angle or curvatures, thus producing an exaggerated large number of small sub-meshes. Although small sub-meshes accept nearly isometric parameterizations, this significant granulation defeats the intent of synthesizing a usable Boundary Representation (compulsory for RE). In response to these limitations, this article presents an implementation of a hybrid geometry / topology segmentation algorithm for mechanical workpieces. This method locates heat transfer constraints (topological criterion) in low frequency neighborhoods of the mesh (geometric criterion) and solves for the resulting temperature distribution on the mesh. The mesh partition dictated by the temperature scalar map results in large, albeit parameterizable, sub-meshes. Our algorithm is tested with both benchmark repository and physical piece scans data. The experiments are successful, except for the well - known cases of topological cylinders, which require a user - introduced boundary along the cylinder generatrices. © 2018 Elsevier LtdÍtem Hybrid geometry / topology based mesh segmentation for reverse engineering(PERGAMON-ELSEVIER SCIENCE LTD, 2018-06-01) Mejia D.; Ruiz-Salguero O.; Sánchez J.R.; Posada J.; Moreno A.; Cadavid C.A.; Mejia D.; Ruiz-Salguero O.; Sánchez J.R.; Posada J.; Moreno A.; Cadavid C.A.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesMesh segmentation and parameterization are crucial for Reverse Engineering (RE). Bijective parameterizations of the sub-meshes are a sine-qua-non test for segmentation. Current segmentation methods use either (1) topologic or (2) geometric criteria to partition the mesh. Reported topology-based segmentations produce large sub-meshes which reject parameterizations. Geometry-based segmentations are very sensitive to local variations in dihedral angle or curvatures, thus producing an exaggerated large number of small sub-meshes. Although small sub-meshes accept nearly isometric parameterizations, this significant granulation defeats the intent of synthesizing a usable Boundary Representation (compulsory for RE). In response to these limitations, this article presents an implementation of a hybrid geometry / topology segmentation algorithm for mechanical workpieces. This method locates heat transfer constraints (topological criterion) in low frequency neighborhoods of the mesh (geometric criterion) and solves for the resulting temperature distribution on the mesh. The mesh partition dictated by the temperature scalar map results in large, albeit parameterizable, sub-meshes. Our algorithm is tested with both benchmark repository and physical piece scans data. The experiments are successful, except for the well - known cases of topological cylinders, which require a user - introduced boundary along the cylinder generatrices. © 2018 Elsevier Ltd