Examinando por Materia "Musa"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems(Elsevier GmbH, 2018-01-01) Posada, L.F.; Álvarez, J.C.; Romero-Tabarez, M.; de-Bashan, L.; Villegas-Escobar, V.; Universidad EAFIT. Departamento de Ciencias; Ciencias Biológicas y Bioprocesos (CIBIOP)Bacillus subtilis EA-CB0575 is a plant growth-promoting bacterium (PGPB) associated with banana and tomato crops. Root colonization is an important trait for PGPB microorganisms and potentiates the bacterial effect related to the mechanisms of plant growth promotion. Therefore, detection of bacterial colonization of roots in different culture systems is important in the study of plant–microorganism interactions. In this study, fluorescent in situ hybridization (FISH) and catalyzed reporter deposition–FISH (CARD–FISH) were evaluated to determine the colonization ability of B. subtilis EA-CB0575 on banana and tomato roots planted on solid and liquid Murashige and Skoog medium (MS(S) and MS(L), respectively) and in soil for tomato plants. Results showed B. subtilis colonization 0–30 days post inoculation for banana and tomato plants in different culture systems with differential distribution of bacterial cells along tomato and banana roots. FISH and CARD–FISH methodologies were both successful in detecting B. subtilis colonies, but CARD–FISH proved to be superior due to its enhanced fluorescence signal. The presence of bacteria correlated with the promotion of plant growth in both plant species, providing clues to relate rhizospheric colonization with improvement in plant growth. FISH and CARD–FISH analysis results suggested the presence of native microbiota on the roots of in vitro banana plants, but not on those of tomato plants. © 2018 Elsevier GmbHÍtem Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems(Elsevier GmbH, 2018-01-01) Posada, L.F.; Álvarez, J.C.; Romero-Tabarez, M.; de-Bashan, L.; Villegas-Escobar, V.; Universidad EAFIT. Departamento de Ciencias; Biodiversidad, Evolución y ConservaciónBacillus subtilis EA-CB0575 is a plant growth-promoting bacterium (PGPB) associated with banana and tomato crops. Root colonization is an important trait for PGPB microorganisms and potentiates the bacterial effect related to the mechanisms of plant growth promotion. Therefore, detection of bacterial colonization of roots in different culture systems is important in the study of plant–microorganism interactions. In this study, fluorescent in situ hybridization (FISH) and catalyzed reporter deposition–FISH (CARD–FISH) were evaluated to determine the colonization ability of B. subtilis EA-CB0575 on banana and tomato roots planted on solid and liquid Murashige and Skoog medium (MS(S) and MS(L), respectively) and in soil for tomato plants. Results showed B. subtilis colonization 0–30 days post inoculation for banana and tomato plants in different culture systems with differential distribution of bacterial cells along tomato and banana roots. FISH and CARD–FISH methodologies were both successful in detecting B. subtilis colonies, but CARD–FISH proved to be superior due to its enhanced fluorescence signal. The presence of bacteria correlated with the promotion of plant growth in both plant species, providing clues to relate rhizospheric colonization with improvement in plant growth. FISH and CARD–FISH analysis results suggested the presence of native microbiota on the roots of in vitro banana plants, but not on those of tomato plants. © 2018 Elsevier GmbHÍtem Fengycin C produced by Bacillus subtilis EA-CB0015.(AMER CHEMICAL SOC, 2013-04-26) Villegas-Escobar, Valeska; Ceballos, Isabel; Mira, John J.; Edith Argel, Luz; Orduz Peralta, Sergio; Romero-Tabarez, Magally; Universidad EAFIT. Departamento de Ciencias; Ciencias Biológicas y Bioprocesos (CIBIOP)Bacillus subtilis EA-CB0015 was isolated from the phyllosphere of a banana plant and tested for its potential to produce bioactive compounds against Mycosphaerella fijiensis. Using a dual plate culture technique the cell-free supernatant of B. subtilis EA-CB0015 produced inhibition values of 89 +/- 1%. The active compounds were purified by solid-phase extraction and HPLC, and their primary structures determined using mass spectrometry and amino acid analysis. A new fengycin isoform, fengycin C, with the amino acid sequence Glu-Orn-Tyr-Thr-Glu-Val-Pro-Gln-Thr-Ile was isolated. The peptidic moiety differs from fengycin B at position 9 and from fengycin A at positions 6 and 9. The beta-hydroxy fatty acyl chain is connected to the N-terminal of the decapeptide and can be saturated or unsaturated, ranging from 14 to 18 carbons. The C-terminal residue of the peptidic moiety is linked to the tyrosine residue at position 3, forming the branching point of the acyl peptide and the eight-membered cyclic lactone.