Examinando por Materia "Molecular Conformation"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Insights into the structure and stability of the carbonic acid dimer(ROYAL SOC CHEMISTRY, 2010-01-01) Murillo, Juliana; David, Jorge; Restrepo, Albeiro; Universidad EAFIT. Departamento de Ciencias Básicas; Electromagnetismo Aplicado (Gema)In this paper we report the geometries and properties of 40 structural isomers located on the MP2/6-311++G** PES of the carbonic acid dimer. All six possible combinations of carbonic acid monomers were considered. The dimers are divided into six geometrical motifs. Our data suggests that combinations of anti-anti monomers do not necessarily lead to larger stabilization energies in the formation of the dimers. MP2 underestimates the relative binding energies with respect to CCSD(T) by as much as 3.2 kcal mol-1. At least 3 different dimers which may contribute to the stability of carbonic acid are predicted to have significant populations. Binding energy is only directly related to relative stability when comparing dimers formed from the same monomers. Overall stabilization is mainly dictated by attractive electrostatic interactions via cooperative polarization by virtue of the spatial arrangement of the dipole moment components along the polar bonds. Shorter O…H bond distances and larger bond orders predicted for the hydrogen bonds directed towards carbonyl groups make for stronger hydrogen bonding than in O…H bonds directed towards hydroxyl groups. © the Owner Societies.Ítem Microsolvation of dimethylphosphate: A molecular model for the interaction of cell membranes with water(ROYAL SOC CHEMISTRY, 2013-01-01) Ibargueen, Cesar; Manrique-Moreno, Marcela; Hadad, C. Z.; David, Jorge; Restrepo, Albeiro; Universidad EAFIT. Departamento de Ciencias Básicas; Electromagnetismo Aplicado (Gema)We present an exhaustive stochastic search of the quantum conformational spaces of the (CH3O)2PO2 - + nH 2O (n = 1,2,3) systems. We uncover structural, conformational and energetic features of the problem. As in the isolated species, clusters containing the gauche-gauche (gg) conformation of dimethylphosphate (DMP -) are energetically preferred, however, contributions from hydrated gauche-anti (ga) and anti-anti (aa) monomers cannot be neglected because such structures are quite common and because they are close in energy to those containing the gg monomer. At least seven distinct types of O?H-O-H contacts lead to DMP- ? water interactions that are always stabilizing, but not strong enough to induce significant changes in the geometries of either DMP- or water units. Our results lead us to postulate DMP- to be a suitable model to study explicit and detailed aspects of microsolvation of cell membranes. This journal is © 2013 the Owner Societies.