Examinando por Materia "Model predictive control"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem NMPC controller applied to the operation of an internal combustion engine: formulation and solution of the optimization problem in real time(Springer-Verlag France, 2018-02-01) Chica, J.A.V.; Torres, A.G.D.; Acosta Maya, Diego Andres; Chica, J.A.V.; Torres, A.G.D.; Acosta Maya, Diego Andres; Universidad EAFIT. Departamento de Ingeniería de Producción; Ingeniería, Energía, Exergía y Sostenibilidad (IEXS)Numerical optimization solve problems efficiently where such efficiency is focused on the speed with which the optimal x* is achieved, is open line of research and strong work in the scientific community in order to achieve control systems in dynamic processes with response times of the order of milliseconds. A clear example of this, is the implementation of optimal controller’s combustion engines. For subsequent approach to the design and implementation of nonlinear model predictive control controllers, it has made a comparison of yields algorithms quadratic programming by active set with linearization restrictions, and sequential quadratic programming with single shooting technique to solve quadratic optimization problem formulation referred to a dynamic internal combustion engine of spark ignition, in embedded systems with real-time processing. © 2016, Springer-Verlag France.Ítem NMPC controller applied to the operation of an internal combustion engine: formulation and solution of the optimization problem in real time(Springer-Verlag France, 2018-02-01) Chica, J.A.V.; Torres, A.G.D.; Acosta Maya, Diego Andres; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosNumerical optimization solve problems efficiently where such efficiency is focused on the speed with which the optimal x* is achieved, is open line of research and strong work in the scientific community in order to achieve control systems in dynamic processes with response times of the order of milliseconds. A clear example of this, is the implementation of optimal controller’s combustion engines. For subsequent approach to the design and implementation of nonlinear model predictive control controllers, it has made a comparison of yields algorithms quadratic programming by active set with linearization restrictions, and sequential quadratic programming with single shooting technique to solve quadratic optimization problem formulation referred to a dynamic internal combustion engine of spark ignition, in embedded systems with real-time processing. © 2016, Springer-Verlag France.Ítem NMPC controller applied to the operation of an internal combustion engine: formulation and solution of the optimization problem in real time(Springer-Verlag France, 2018-02-01) Chica, J.A.V.; Torres, A.G.D.; Acosta Maya, Diego Andres; Chica, J.A.V.; Torres, A.G.D.; Acosta Maya, Diego Andres; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)Numerical optimization solve problems efficiently where such efficiency is focused on the speed with which the optimal x* is achieved, is open line of research and strong work in the scientific community in order to achieve control systems in dynamic processes with response times of the order of milliseconds. A clear example of this, is the implementation of optimal controller’s combustion engines. For subsequent approach to the design and implementation of nonlinear model predictive control controllers, it has made a comparison of yields algorithms quadratic programming by active set with linearization restrictions, and sequential quadratic programming with single shooting technique to solve quadratic optimization problem formulation referred to a dynamic internal combustion engine of spark ignition, in embedded systems with real-time processing. © 2016, Springer-Verlag France.Ítem Temperature regulation of a pilot-scale batch reaction system via explicit model predictive control(Institute of Electrical and Electronics Engineers Inc., 2015-01-01) Sanchez-Cossio, J.; Ortega-Alvarez, J.D.; Ocampo-Martinez, C.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosIn this paper, the temperature of a pilot-scale batch reaction system is modeled towards the design of a controller based on the explicit model predictive control (EMPC) strategy. Some mathematical models are developed from experimental data to describe the system behavior. The simplest, yet reliable, model obtained is a (1,1,1)-order ARX polynomial model for which the mentioned EMPC controller has been designed. The resultant controller has a reduced mathematical complexity and, according to the successful results obtained in simulations, will be used directly on the real control system in a next stage of the entire experimental framework.