Examinando por Materia "Mathematical transformations"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem A simple but efficient voice activity detection algorithm through Hilbert transform and dynamic threshold for speech pathologies(IOP PUBLISHING LTD, 2016-01-01) Ortiz, P.D.; Villa, L.F.; Salazar, C.; Quintero, O.L.; Ortiz, P.D.; Villa, L.F.; Salazar, C.; Quintero, O.L.; Universidad EAFIT. Departamento de Ciencias; Modelado MatemáticoA simple but efficient voice activity detector based on the Hilbert transform and a dynamic threshold is presented to be used on the pre-processing of audio signals. The algorithm to define the dynamic threshold is a modification of a convex combination found in literature. This scheme allows the detection of prosodic and silence segments on a speech in presence of non-ideal conditions like a spectral overlapped noise. The present work shows preliminary results over a database built with some political speech. The tests were performed adding artificial noise to natural noises over the audio signals, and some algorithms are compared. Results will be extrapolated to the field of adaptive filtering on monophonic signals and the analysis of speech pathologies on futures works.Ítem Weighted area/angle distortion minimization for Mesh Parameterization(EMERALD GROUP PUBLISHING LIMITED, 2017-01-01) Mejia D.; Acosta D.A.; Ruiz-Salguero O.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosPurpose: Mesh Parameterization is central to reverse engineering, tool path planning, etc. This work synthesizes parameterizations with un-constrained borders, overall minimum angle plus area distortion. This study aims to present an assessment of the sensitivity of the minimized distortion with respect to weighed area and angle distortions. Design/methodology/approach: A Mesh Parameterization which does not constrain borders is implemented by performing: isometry maps for each triangle to the plane Z = 0; an affine transform within the plane Z = 0 to glue the triangles back together; and a Levenberg-Marquardt minimization algorithm of a nonlinear F penalty function that modifies the parameters of the first two transformations to discourage triangle flips, angle or area distortions. F is a convex weighed combination of area distortion (weight: a with 0 = a = 1) and angle distortion (weight: 1 - a). Findings: The present study parameterization algorithm has linear complexity [O(n), n = number of mesh vertices]. The sensitivity analysis permits a fine-tuning of the weight parameter which achieves overall bijective parameterizations in the studied cases. No theoretical guarantee is given in this manuscript for the bijectivity. This algorithm has equal or superior performance compared with the ABF, LSCM and ARAP algorithms for the Ball, Cow and Gargoyle data sets. Additional correct results of this algorithm alone are presented for the Foot, Fandisk and Sliced-Glove data sets. Originality/value: The devised free boundary nonlinear Mesh Parameterization method does not require a valid initial parameterization and produces locally bijective parameterizations in all of our tests. A formal sensitivity analysis shows that the resulting parameterization is more stable, i.e. the UV mapping changes very little when the algorithm tries to preserve angles than when it tries to preserve areas. The algorithm presented in this study belongs to the class that parameterizes meshes with holes. This study presents the results of a complexity analysis comparing the present study algorithm with 12 competing ones. © Emerald Publishing Limited.Ítem Weighted area/angle distortion minimization for Mesh Parameterization(EMERALD GROUP PUBLISHING LIMITED, 2017-01-01) Mejia D.; Acosta D.A.; Ruiz-Salguero O.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEPurpose: Mesh Parameterization is central to reverse engineering, tool path planning, etc. This work synthesizes parameterizations with un-constrained borders, overall minimum angle plus area distortion. This study aims to present an assessment of the sensitivity of the minimized distortion with respect to weighed area and angle distortions. Design/methodology/approach: A Mesh Parameterization which does not constrain borders is implemented by performing: isometry maps for each triangle to the plane Z = 0; an affine transform within the plane Z = 0 to glue the triangles back together; and a Levenberg-Marquardt minimization algorithm of a nonlinear F penalty function that modifies the parameters of the first two transformations to discourage triangle flips, angle or area distortions. F is a convex weighed combination of area distortion (weight: a with 0 = a = 1) and angle distortion (weight: 1 - a). Findings: The present study parameterization algorithm has linear complexity [O(n), n = number of mesh vertices]. The sensitivity analysis permits a fine-tuning of the weight parameter which achieves overall bijective parameterizations in the studied cases. No theoretical guarantee is given in this manuscript for the bijectivity. This algorithm has equal or superior performance compared with the ABF, LSCM and ARAP algorithms for the Ball, Cow and Gargoyle data sets. Additional correct results of this algorithm alone are presented for the Foot, Fandisk and Sliced-Glove data sets. Originality/value: The devised free boundary nonlinear Mesh Parameterization method does not require a valid initial parameterization and produces locally bijective parameterizations in all of our tests. A formal sensitivity analysis shows that the resulting parameterization is more stable, i.e. the UV mapping changes very little when the algorithm tries to preserve angles than when it tries to preserve areas. The algorithm presented in this study belongs to the class that parameterizes meshes with holes. This study presents the results of a complexity analysis comparing the present study algorithm with 12 competing ones. © Emerald Publishing Limited.Ítem Weighted area/angle distortion minimization for Mesh Parameterization(EMERALD GROUP PUBLISHING LIMITED, 2017-01-01) Mejia D.; Acosta D.A.; Ruiz-Salguero O.; Mejia D.; Acosta D.A.; Ruiz-Salguero O.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)Purpose: Mesh Parameterization is central to reverse engineering, tool path planning, etc. This work synthesizes parameterizations with un-constrained borders, overall minimum angle plus area distortion. This study aims to present an assessment of the sensitivity of the minimized distortion with respect to weighed area and angle distortions. Design/methodology/approach: A Mesh Parameterization which does not constrain borders is implemented by performing: isometry maps for each triangle to the plane Z = 0; an affine transform within the plane Z = 0 to glue the triangles back together; and a Levenberg-Marquardt minimization algorithm of a nonlinear F penalty function that modifies the parameters of the first two transformations to discourage triangle flips, angle or area distortions. F is a convex weighed combination of area distortion (weight: a with 0 = a = 1) and angle distortion (weight: 1 - a). Findings: The present study parameterization algorithm has linear complexity [O(n), n = number of mesh vertices]. The sensitivity analysis permits a fine-tuning of the weight parameter which achieves overall bijective parameterizations in the studied cases. No theoretical guarantee is given in this manuscript for the bijectivity. This algorithm has equal or superior performance compared with the ABF, LSCM and ARAP algorithms for the Ball, Cow and Gargoyle data sets. Additional correct results of this algorithm alone are presented for the Foot, Fandisk and Sliced-Glove data sets. Originality/value: The devised free boundary nonlinear Mesh Parameterization method does not require a valid initial parameterization and produces locally bijective parameterizations in all of our tests. A formal sensitivity analysis shows that the resulting parameterization is more stable, i.e. the UV mapping changes very little when the algorithm tries to preserve angles than when it tries to preserve areas. The algorithm presented in this study belongs to the class that parameterizes meshes with holes. This study presents the results of a complexity analysis comparing the present study algorithm with 12 competing ones. © Emerald Publishing Limited.