Logotipo del repositorio
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Listar por
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Mathematical expressions"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Analysis of the stability and dispersion for a Riemannian acoustic wave equation
    (ELSEVIER SCIENCE INC, 2019-01-15) Quiceno, H. R.; Arias, C.; Quiceno, H. R.; Arias, C.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y Aplicaciones
    The construction of images of the Earth's interior using methods as reverse time migration (RTM) or full wave inversion (FWI) strongly depends on the numerical solution of the wave equation. A mathematical expression of the numerical stability and dispersion for a particular wave equation used must be known in order to avoid unbounded numbers of amplitudes. In case of the acoustic wave equation, the Courant–Friedrich–Lewy (CFL) condition is a necessary but is not a sufficient condition for convergence. Thus, we need to search other types of expression for stability condition. In seismic wave problems, the generalized Riemannian wave equation is used to model their propagation in domains with curved meshes which is suitable for zones with rugged topography. However, only a heuristic version of stability condition was reported in the literature for this equation. We derived an expression for stability condition and numerical dispersion analysis for the Riemannian acoustic wave equation in a two-dimensional medium and analyzed its implications in terms of computational cost. © 2018 Elsevier Inc.

Vigilada Mineducación

Universidad con Acreditación Institucional hasta 2026 - Resolución MEN 2158 de 2018

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar Sugerencias