Examinando por Materia "Mapas cognitivos difusos"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Intelligent model for monitoring, evaluating, and recommending strategies to improve the innovation processes of MSMEs(Universidad EAFIT, 2024) Gutiérrez Buitrago, Ana Gissel; Aguilar Castro, José Lisandro; Montoya Múnera, Edwin Nelson; Ortega Álvarez, Ana MaríaThe research focuses on how to improve the innovation process in micro, small and medium-sized enterprises (MSMEs). The study is framed within the Smart Innovation paradigm. In this context, innovation is considered a relevant factor for organizational performance that allows the creation and improvement of competitive advantages through the implementation of new ideas, products, concepts, and services to increase market positioning. For organizations aiming to enhance innovation performance, using intelligent systems and artificial intelligence to guide the innovation process poses a challenge. To address this problem, the goal was to develop methodologies, models and approaches to support decision-making related to the intelligent management of the innovation process. To achieve this, specific objectives were defined. The first one is to design an intelligent model to support innovation processes in MSMEs. The second objective is to apply Artificial Intelligence (AI) techniques to customer data sources in social networks and organizational data of MSMEs, aiming to enhance the innovation process; The third objective is to develop an intelligent system to evaluate the innovation levels in MSMEs. The fourth objective is to instantiate a case study in the fashion cluster of the department of Norte de Santander and in the national context, as part of the applied methodology. To fulfill these objectives, research articles were developed. The process began with a literature review article on the current challenges in applying AI techniques to improve innovation processes in MSMEs. A proposed innovation model was made based on the different innovation models that exist in the literature, and the four research articles were written in compliance with the scientific standards that accredit them, to meet the specific objectives outlined in this doctoral thesis. Each article evaluated the strategies/models using various data sets. The results demonstrated the capacity of the proposed methodologies and models for managing of innovation processes. For instance, the proposals enable the prediction of the level of innovation, and the definition of innovation problems, among other aspects, with positive results in performance metrics.Ítem Predictive and prescriptive modeling for the clinical management of dengue: a case study in Colombia(Universidad EAFIT, 2023) Hoyos Morales, William Segundo; Aguilar Castro, José Lisandro; Toro Bermúdez, MauricioIn this research, we address the problem of clinical management of dengue, which is composed of diagnosis and treatment of the disease. Dengue is a vector-borne tropical disease that is widely distributed worldwide. The development of approaches to aid in decision-making for diseases of public health concern –such as dengue– are necessary to reduce morbidity and mortality rates. Despite the existence of clinical management guidelines, the diagnosis and treatment of dengue remains a challenge. To address this problem, our objective was to develop methodologies, models, and approaches to support decision-making regarding the clinical management of this infection. We developed several research articles to meet the proposed objectives of this thesis. The first article reviewed the latest trends in dengue modeling using machine learning (ML) techniques. The second article proposed a decision support system for the diagnosis of dengue using fuzzy cognitive maps (FCMs). The third article proposed an autonomous cycle of data analysis tasks to support both diagnosis and treatment of the disease. The fourth article presented a methodology based on FCMs and optimization algorithms to generate prescriptive models in clinical settings. The fifth article tested the previously mentioned methodology in other science domains such as, business and education. Finally, the last article proposed three federated learning approaches to guarantee the security and privacy of data related to the clinical management of dengue. In each article, we evaluated such strategies using diverse datasets with signs, symptoms, laboratory tests, and information related to the treatment of the disease. The results showed the ability of the developed methodologies and models to predict disease, classify patients according to severity, evaluate the behavior of severity-related variables, and recommend treatments based on World Health Organization (WHO) guidelines.