Examinando por Materia "Loading"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Foto-degradación de fenol sobre catalizadores de TiO2 y Mo/TiO2. La metodología de superficie de respuesta como herramienta de optimización(Centro de Informacion Tecnologica, 2014-01-01) López-Zamora, S.M.; GilPavas, E.; Gómez-García, M.Á.; Dobrosz-Gómez, I.; López-Zamora, S.M.; GilPavas, E.; Gómez-García, M.Á.; Dobrosz-Gómez, I.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)In this work, the response surface methodology was applied as a tool for the optimization of the operational conditions of phenol photo-degradation over TiO2 and 2% wt Mo/TiO2 catalysts. A multifactorial experimental design was proposed, including the following variables: phenol initial concentration (Ci), catalyst loading (Cat) and pH. The apparent reaction rate constant and the percentage of phenol degradation were chosen as the response variables. When TiO2 was used as catalyst, the following optimal operational conditions were found: Ci=10ppm, Cat=0.7g/L and pH=8 for both UV and visible light. For 2% wt Mo/TiO2 catalyst, the optimal operating conditions strongly depended on the applied radiation source. Thus, under UV radiation: Ci=10 ppm, Cat=0.7 g/L and pH=8 were found as the optimum conditions. Using visible light, and the following optimized conditions, Ci=10 ppm, Cat=0.1 g/L, pH =3.6, the Mo containing catalyst showed to be the most efficient. Under these conditions, the amount of 2% wt. Mo/TiO2 was 7 times lower than that of unsupported TiO2.Ítem Triaxial deformation behavior of bituminous mixes(ASCE-AMER SOC CIVIL ENGINEERS, 2010-02-01) Ossa, E. A.; Deshpande, V. S.; Cebon, D.; Ossa, E. A.; Deshpande, V. S.; Cebon, D.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThe triaxial compressive response of bituminous mixes with volume fractions of aggregate in the range 52 to 85% was investigated over a wide range stresses and strain rates. The types of loadings considered include triaxial monotonic constant stress and constant applied strain rate, as well as creep recovery, continuous cyclic, and stress pulse train loadings. The mixes with a "fully dense" aggregate skeleton were found to dilate under all loading conditions and the creep response of the mixes was dependent on both the deviatoric and hydrostatic stresses. By contrast, recovery was found to occur under zero applied deviatoric stresses with the recovery rate only dependent on the "recoverable strain" and independent of any superimposed hydrostatic stress. Continuous and pulse loading cyclic stress-controlled tests showed that the response of the mixes was governed by the mean applied deviatoric stress in the continuous cyclic tests while strain recovery was important in the pulse loading tests. A phenomenological constitutive model was proposed to fit the measured triaxial response of the bituminous mixes and shown to capture the measurements over all the triaxial stress states and loading time histories investigated here. Furthermore, the model was extended to capture the temperature dependence of the mixtures which is governed by the temperature dependence of the bitumen binder. © 2010 ASCE.