Logotipo del repositorio
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Listar por
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Examinar por materia

Examinando por Materia "KdV equation"

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Taylor-petrov-galerkin method for the numerical solution of KdV equation
    (Hikari Ltd., 2016-01-01) Jairo Villegas, G.; Lida Buitrago, G.; Jorge Castaño, B.; Jairo Villegas, G.; Lida Buitrago, G.; Jorge Castaño, B.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y Aplicaciones
    In order to find the approximate solution of the KdV equation, we use the finite element method of Taylor-Petrov-Galerkin, in which discretization in the time variable is carried out using Taylor series expansion and for discretization in space are considered as test functions cubic B-splines and Legendre polynomials as weight functions. These functions are adequate in that they satisfy continuity, integrability and orthogonality required to apply the method. © 2015 Jairo Villegas G., Lida Buitrago G. and Jorge Castaño B.
  • No hay miniatura disponible
    Ítem
    Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation
    (Hikari, 2012) Villegas Gutiérrez, Jairo Alberto; Castaño B., Jorge; Duarte V., Julio; Fierro Y., Esper; Universidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y Aplicaciones; Universidad Surcolombiana. Departamento de Matemáticas. Neiva, Colombia; Villegas Gutiérrez, Jairo Alberto; Análisis Funcional y Aplicaciones
    The development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV).
  • No hay miniatura disponible
    Ítem
    Wavelet-Petrov-Galerkin method for the numerical solution of the KdV equation
    (Hikari Ltd., 2012-01-01) Jairo Villegas, G.; Jorge Castaño, B.; Julio Duarte, V.; Esper Fierro, Y.; Jairo Villegas, G.; Jorge Castaño, B.; Julio Duarte, V.; Esper Fierro, Y.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y Aplicaciones
    The development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV).

Vigilada Mineducación

Universidad con Acreditación Institucional hasta 2026 - Resolución MEN 2158 de 2018

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar Sugerencias