Examinando por Materia "KdV equation"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Taylor-petrov-galerkin method for the numerical solution of KdV equation(Hikari Ltd., 2016-01-01) Jairo Villegas, G.; Lida Buitrago, G.; Jorge Castaño, B.; Jairo Villegas, G.; Lida Buitrago, G.; Jorge Castaño, B.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesIn order to find the approximate solution of the KdV equation, we use the finite element method of Taylor-Petrov-Galerkin, in which discretization in the time variable is carried out using Taylor series expansion and for discretization in space are considered as test functions cubic B-splines and Legendre polynomials as weight functions. These functions are adequate in that they satisfy continuity, integrability and orthogonality required to apply the method. © 2015 Jairo Villegas G., Lida Buitrago G. and Jorge Castaño B.Ítem Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation(Hikari, 2012) Villegas Gutiérrez, Jairo Alberto; Castaño B., Jorge; Duarte V., Julio; Fierro Y., Esper; Universidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y Aplicaciones; Universidad Surcolombiana. Departamento de Matemáticas. Neiva, Colombia; Villegas Gutiérrez, Jairo Alberto; Análisis Funcional y AplicacionesThe development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV).Ítem Wavelet-Petrov-Galerkin method for the numerical solution of the KdV equation(Hikari Ltd., 2012-01-01) Jairo Villegas, G.; Jorge Castaño, B.; Julio Duarte, V.; Esper Fierro, Y.; Jairo Villegas, G.; Jorge Castaño, B.; Julio Duarte, V.; Esper Fierro, Y.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesThe development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV).