Examinando por Materia "Industrial textile wastewater"
Mostrando 1 - 6 de 6
Resultados por página
Opciones de ordenación
Ítem ¡En la U estamos recuperando aguas residuales!(2020-12-01) Martinez Guerrero, Christian Alexander; Christian Alexander Martinez-Guerrero; Christian Alexander Martinez-Guerrero; GilPavas, Edison; Drobosz-Gomez, Izabela; Gómez-García, Miguel-Ángel; Procesos AmbientalesÍtem Optimization of sequential chemical coagulation - electro-oxidation process for the treatment of an industrial textile wastewater(Elsevier Ltd, 2018-04-01) GIL PAVAS EDISON; Dobrosz-Gómez, I.; Angel Gomez-Garcia, Miguel; GIL PAVAS EDISON; Dobrosz-Gómez, I.; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)In this study, the sequential Chemical Coagulation-Electro-Oxidation (CC-EO) process was proposed as an alternative for the treatment of an industrial textile wastewater. Complete characterization of the effluent was made in the terms of its organic load (Total Organic Carbon (TOC), Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD5)), biodegradability (BOD5/COD ratio) and solids content (total solids and turbidity). For CC, the jar test was used to determine both the most favorable dosage of coagulant and pH of the process (i.e., 600 mg/L of Al2(SO4)3 at pH of 9.3). CC let to remove ca. 93% of turbidity, 53% of COD and 24% of TOC. It also increased BOD5/COD ratio of raw textile wastewater from 0.16 to 0.27. Next, CC effluent was treated by EO. Its performance was optimized using Box-Behnken experimental Design and Response Surface Methodology. The following EO optimal conditions were found: current density = 15 mA/cm2, conductivity = 4.7 mS/cm and pH = 5.6. At these conditions, the sequential CC-EO process removed 100% of color, 93.5% of COD, and 75% of TOC after 45 min of electrolysis with an estimated operating cost of 6.91 USD/m3. Moreover, the CC-EO process yield a highly oxidized (Average Oxidation State, AOS = 2.3) and biocompatible (BOD5/COD >0.4) effluent. © 2018 Elsevier LtdÍtem Optimization of sequential chemical coagulation - electro-oxidation process for the treatment of an industrial textile wastewater(Elsevier Ltd, 2018-04-01) GIL PAVAS EDISON; Dobrosz-Gómez, I.; Angel Gomez-Garcia, Miguel; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosIn this study, the sequential Chemical Coagulation-Electro-Oxidation (CC-EO) process was proposed as an alternative for the treatment of an industrial textile wastewater. Complete characterization of the effluent was made in the terms of its organic load (Total Organic Carbon (TOC), Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD5)), biodegradability (BOD5/COD ratio) and solids content (total solids and turbidity). For CC, the jar test was used to determine both the most favorable dosage of coagulant and pH of the process (i.e., 600 mg/L of Al2(SO4)3 at pH of 9.3). CC let to remove ca. 93% of turbidity, 53% of COD and 24% of TOC. It also increased BOD5/COD ratio of raw textile wastewater from 0.16 to 0.27. Next, CC effluent was treated by EO. Its performance was optimized using Box-Behnken experimental Design and Response Surface Methodology. The following EO optimal conditions were found: current density = 15 mA/cm2, conductivity = 4.7 mS/cm and pH = 5.6. At these conditions, the sequential CC-EO process removed 100% of color, 93.5% of COD, and 75% of TOC after 45 min of electrolysis with an estimated operating cost of 6.91 USD/m3. Moreover, the CC-EO process yield a highly oxidized (Average Oxidation State, AOS = 2.3) and biocompatible (BOD5/COD >0.4) effluent. © 2018 Elsevier LtdÍtem ¿Sabías que en la U se están recuperando aguas residuales?(2020-12-01) Martinez Guerrero, Christian Alexander; Christian Alexander Martinez-Guerrero; GilPavas, Edison; Drobosz-Gomez, Izabela; Gómez-García, Miguel-Ángel; Vicerrectoría de Descubrimiento y CreaciónÍtem Using scrap zero valent iron to replace dissolved iron in the Fenton process for textile wastewater treatment: Optimization and assessment of toxicity and biodegradability(Elsevier Ltd., 2019-09-01) GilPavas, Edison; Correa-Sanchez, Santiago; Acosta, Diego A.; GilPavas, Edison; Correa-Sanchez, Santiago; Acosta, Diego A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)A Fenton like advanced oxidation process (AOP) employing scrap zerovalent iron (SZVI) and hydrogen peroxide (H2O2) was studied for industrial textile wastewater treatment from a textile manufacturing plant located at Medellin, Colombia (South America). The wastewater effluent studied contains a mixture of organic compounds resistant to conventional treatments. The effect of initial pH and SZVI concentration and H2O2 concentration were studied by a response surface methodology (RSM) Box-Behnken design of experiment (BBD). The combined SZVI/H2O2 process led to reductions of 95% color, 76% of chemical oxygen demand (COD) and 71% of total organic carbon (TOC) at optimal operating conditions of pH = 3, SZVI = 2000 mg/L and [H2O2] = 24.5 mM. Molecular weight distribution measurement (MWD), ultraviolet-visible (UV-Vis) spectroscopy, HPLC, biodegradability and toxicity were used to characterize the pollutants after the treatment process finding that the resulting effluent was polluted mostly by low molecular weight carboxylic acids. A remarkable biodegradability enhancement of the effluent was evidenced by a BOD5/COD ratio increase from 0.22 to 0.4; also, the SZVI/H2O2 process successfully reduced the toxicity from 60% to 20% of dead A. Salina crustaceans. (C) 2019 Elsevier Ltd. All rights reserved.Ítem Using scrap zero valent iron to replace dissolved iron in the Fenton process for textile wastewater treatment: Optimization and assessment of toxicity and biodegradability(Elsevier Ltd., 2019-09-01) GilPavas, Edison; Correa-Sanchez, Santiago; Acosta, Diego A.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosA Fenton like advanced oxidation process (AOP) employing scrap zerovalent iron (SZVI) and hydrogen peroxide (H2O2) was studied for industrial textile wastewater treatment from a textile manufacturing plant located at Medellin, Colombia (South America). The wastewater effluent studied contains a mixture of organic compounds resistant to conventional treatments. The effect of initial pH and SZVI concentration and H2O2 concentration were studied by a response surface methodology (RSM) Box-Behnken design of experiment (BBD). The combined SZVI/H2O2 process led to reductions of 95% color, 76% of chemical oxygen demand (COD) and 71% of total organic carbon (TOC) at optimal operating conditions of pH = 3, SZVI = 2000 mg/L and [H2O2] = 24.5 mM. Molecular weight distribution measurement (MWD), ultraviolet-visible (UV-Vis) spectroscopy, HPLC, biodegradability and toxicity were used to characterize the pollutants after the treatment process finding that the resulting effluent was polluted mostly by low molecular weight carboxylic acids. A remarkable biodegradability enhancement of the effluent was evidenced by a BOD5/COD ratio increase from 0.22 to 0.4; also, the SZVI/H2O2 process successfully reduced the toxicity from 60% to 20% of dead A. Salina crustaceans. (C) 2019 Elsevier Ltd. All rights reserved.