Examinando por Materia "GPU"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Fast simulation of laser heating processes on thin metal plates with FFT using CPU/GPU hardware(Universitatea Politehnica Bucuresti, 2020-01-01) Mejia-Parra D.; Arbelaiz A.; Ruiz-Salguero O.; Lalinde-Pulido J.; Moreno A.; Posada J.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEIn flexible manufacturing systems, fast feedback from simulation solutions is required for effective tool path planning and parameter optimization. In the particular sub-domain of laser heating/cutting of thin rectangular plates, current state-of-the-art methods include frequency-domain (spectral) analytic solutions that greatly reduce the required computational time in comparison to industry standard finite element based approaches. However, these spectral solutions have not been presented previously in terms of Fourier methods and Fast Fourier Transform (FFT) implementations. This manuscript presents four different schemes that translate the problem of laser heating of rectangular plates into equivalent FFT problems. The presented schemes make use of the FFT algorithm to reduce the computational time complexity of the problem from O(M2N2) to O(MN log(MN)) (with M× N being the discretization size of the plate). The test results show that the implemented schemes outperform previous non-FFT approaches both in CPU and GPU hardware, resulting in 100× faster runs. Future work addresses thermal/stress analysis, non-rectangular geometries and non-linear interactions (such as material melting/ablation, convection and radiation heat transfer). © 2020 by the authors.Ítem Fast simulation of laser heating processes on thin metal plates with FFT using CPU/GPU hardware(Universitatea Politehnica Bucuresti, 2020-01-01) Mejia-Parra D.; Arbelaiz A.; Ruiz-Salguero O.; Lalinde-Pulido J.; Moreno A.; Posada J.; Mejia-Parra D.; Arbelaiz A.; Ruiz-Salguero O.; Lalinde-Pulido J.; Moreno A.; Posada J.; Universidad EAFIT. Departamento de Ingeniería de Sistemas; I+D+I en Tecnologías de la Información y las ComunicacionesIn flexible manufacturing systems, fast feedback from simulation solutions is required for effective tool path planning and parameter optimization. In the particular sub-domain of laser heating/cutting of thin rectangular plates, current state-of-the-art methods include frequency-domain (spectral) analytic solutions that greatly reduce the required computational time in comparison to industry standard finite element based approaches. However, these spectral solutions have not been presented previously in terms of Fourier methods and Fast Fourier Transform (FFT) implementations. This manuscript presents four different schemes that translate the problem of laser heating of rectangular plates into equivalent FFT problems. The presented schemes make use of the FFT algorithm to reduce the computational time complexity of the problem from O(M2N2) to O(MN log(MN)) (with M× N being the discretization size of the plate). The test results show that the implemented schemes outperform previous non-FFT approaches both in CPU and GPU hardware, resulting in 100× faster runs. Future work addresses thermal/stress analysis, non-rectangular geometries and non-linear interactions (such as material melting/ablation, convection and radiation heat transfer). © 2020 by the authors.Ítem Simulating Soft Tissues using a GPU approach of the Mass-Spring Model(IEEE COMPUTER SOC, 2010-01-01) Diaz Leon, Christian Andres; Eliuk, Steven; Trefftz Gomez, Helmuth; Universidad EAFIT. Departamento de Ingeniería de Sistemas; I+D+I en Tecnologías de la Información y las ComunicacionesThe recent advances in the fields such as modeling bio-mechanics of living tissues, haptic technologies, computational capacity, and graphics realism have created conditions necessary in order to develop effective surgical training using virtual environments. However, virtual simulators need to meet two requirements, they need to be real-time and highly realistic. The most expensive computational task in a surgical simulator is that of the physical model. The physical model is the component responsible to simulate the deformation of the anatomical structures and the most important factor in order to obtain realism. In this paper we present a novel approach to virtual surgery. The novelty comes in two forms: specifically a highly realistic mass-spring model, and a GPU based technique, and analysis, that provides a nearly 80x speedup over serial execution and 20x speedup over CPU based parallel execution.